Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F I M N
Do AE = CF nên AEFD và CFEB là hai hình thang vuông bằng nhau. Vậy thì \(S_{CFAB}=\frac{S_{ABCD}}{2}\Rightarrow S_{EMB}+S_{MNCB}+S_{NFC}=\frac{S_{ABCD}}{2}\)
Lại có \(S_{IBC}=\frac{S_{ABCD}}{2}\Rightarrow S_{IMN}+S_{NMCB}=\frac{S_{ABCD}}{2}\)
Vậy thì \(S_{IMN}=S_{MEB}+S_{NFC}\)
bạn vô đây coi bài nào thích hớp thì xem Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE a) Chứng minh rằng HK song song với DE b) Tính HK, biết chu vi tam giác ABC bằng 10 cm Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB... Xem thêm - Tìm với Google