Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Áp dụng hệ thức lượng trong tam giác:
+) Tam giácACE , có :
\(AC^2=AB.AE\left(1\right)\)
+) Tam giác ACF , có :
\(AC^2=AD.\text{AF}\left(2\right)\)
Từ (1) và (2) =>AB.AE=AD=AF (đpcm)
Có Góc AEB và góc AFB bằng 90 vì cùng chắn AB mà AB là đường kính, chắn nửa đường tròn ý.
Mà Góc EAF bằng góc AFB vì cùng chắn cung EB
Suy ra 3 góc bằng nhau theo tính chất bắc cầu.( Cùng bằng 90 )
Suy ra đây là hình chữ nhật( Theo định nghĩa.)
b) Có góc AEF= góc FBA( cùng chắn cung AF)
Có FKB+ góc FBK= 90 ( KFB= 90) (cmt)
mà FBE+ FBK=90
suy ra FKB= AEF mà AEF+ FEH= 180
suy ra FKB+ FEH= 180
suy ra EFKH là tứ giác nội tiếp.
c) Có FBA= FAM ( cùng + Vs AFB = 90)( còn tại sao bạn tự nhìn mình viết tắt thôi)
mà FBA= BKF( cùng phụ vs FBK)
suy ra KAM= AKM
suy ra AMK là tam giác cân tại đỉnh M
suy ra MA= MK
tương tự bên kia có MA= MH
suy ra MA= MH= MK
suy ra MA là trung tuyến.
A B O C E F D I H K M J
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC
Vậy nên AE + BF = EC + CF = EF
b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:
\(DA^2=DC.DB\)
c) Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)
Lại có AB = 2OB; AC = 2AH.
Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)
Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )
Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)
Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)
Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)
\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)
\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)
d) Từ A kẻ AJ song song với BD cắt BF tại J.
Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.
Vậy ta có D, O , J thẳng hàng.
Xét tam giác AFJ có \(AB\perp FJ\)
\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)
Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\) (1)
Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.
Vậy thì \(AM\perp IO\) (2)
Từ (1) và (2) suy ra A, M , F thẳng hàng.
mình không vẽ hình nhé
a) \(\Delta ABD~\Delta AFE\left(g.g\right)\Rightarrow\frac{AB}{AF}=\frac{AD}{AE}\Rightarrow AB.AE=AD.AF\)
b) AM cắt BD tại H
Xét \(\Delta AEF\)có M là trung điểm EF
\(\Rightarrow AM=MF=ME\)
\(\Rightarrow\Delta AMF\)cân tại M
\(\Rightarrow\widehat{MAF}=\widehat{MFA}=\widehat{ABD}\)
Mà \(\widehat{ABD}+\widehat{ADB}=90^o\Rightarrow\widehat{MAF}+\widehat{ADB}=90^o\)
\(\Rightarrow\widehat{AHD}=90^o\Rightarrow AM\perp BD\)
c) vì AK là dây chung của hai đường tròn ( O ) và ( M ) nên \(OM\perp AK\)
Xét \(\Delta AMS\)có MO và AO là đường cao nên O là trực tâm
\(\Rightarrow SO\perp AM\)( 1 )
Mà \(BD\perp AM\)( 2 )
Từ ( 1 ) và ( 2 ) nên B,D,S thẳng hàng