K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

mình không vẽ hình nhé

a) \(\Delta ABD~\Delta AFE\left(g.g\right)\Rightarrow\frac{AB}{AF}=\frac{AD}{AE}\Rightarrow AB.AE=AD.AF\)

b) AM cắt BD tại H

Xét \(\Delta AEF\)có M là trung điểm EF

\(\Rightarrow AM=MF=ME\)

\(\Rightarrow\Delta AMF\)cân tại M

\(\Rightarrow\widehat{MAF}=\widehat{MFA}=\widehat{ABD}\)

Mà \(\widehat{ABD}+\widehat{ADB}=90^o\Rightarrow\widehat{MAF}+\widehat{ADB}=90^o\)

\(\Rightarrow\widehat{AHD}=90^o\Rightarrow AM\perp BD\)

c) vì AK là dây chung của hai đường tròn ( O ) và ( M ) nên \(OM\perp AK\)

Xét \(\Delta AMS\)có MO và AO là đường cao nên O là trực tâm

\(\Rightarrow SO\perp AM\)( 1 )

Mà \(BD\perp AM\)( 2 )

Từ ( 1 ) và ( 2 ) nên B,D,S thẳng hàng

1 tháng 5 2020

a,Áp dụng hệ thức lượng trong tam giác:

+) Tam giácACE , có :

\(AC^2=AB.AE\left(1\right)\)

+) Tam giác ACF , có :

\(AC^2=AD.\text{AF}\left(2\right)\)

Từ (1) và (2) =>AB.AE=AD=AF             (đpcm)

13 tháng 2 2018

Có Góc AEB và góc AFB bằng 90 vì cùng chắn AB mà AB là đường kính, chắn nửa đường tròn ý. 
Mà Góc EAF bằng góc AFB vì cùng chắn cung EB 
Suy ra 3 góc bằng nhau theo tính chất bắc cầu.( Cùng bằng 90 ) 
Suy ra đây là hình chữ nhật( Theo định nghĩa.) 
b) Có góc AEF= góc FBA( cùng chắn cung AF) 
Có FKB+ góc FBK= 90 ( KFB= 90) (cmt) 
mà FBE+ FBK=90 
suy ra FKB= AEF mà AEF+ FEH= 180 
suy ra FKB+ FEH= 180 
suy ra EFKH là tứ giác nội tiếp. 
c) Có FBA= FAM ( cùng + Vs AFB = 90)( còn tại sao bạn tự nhìn mình viết tắt thôi) 
mà FBA= BKF( cùng phụ vs FBK) 
suy ra KAM= AKM 
suy ra AMK là tam giác cân tại đỉnh M 
suy ra MA= MK 
tương tự bên kia có MA= MH 
suy ra MA= MH= MK 
suy ra MA là trung tuyến. 

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
4 tháng 12 2017

A B O C E F D I H K M J

a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC

Vậy nên AE + BF = EC + CF = EF

b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:

\(DA^2=DC.DB\)

c)  Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)

Lại có AB = 2OB; AC = 2AH.

Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)

Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )

Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)

Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)

Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)

\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)

\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)

d) Từ A kẻ AJ song song với BD cắt BF tại J.

Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.

Vậy ta có D, O , J  thẳng hàng.

Xét tam giác AFJ có \(AB\perp FJ\)

\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)

Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\)  (1)

Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.

Vậy thì \(AM\perp IO\)   (2)

Từ (1) và (2) suy ra A, M , F thẳng hàng.