K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
24 tháng 10 2021
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: AF//CE
25 tháng 10 2021
Xét hình tứ giác đấy có:
`=>AE//// CF`
`AE=CF`
Có bốn cạnh như trên suy ra là hình bình hành.
`=>` `AF////CE`
14 tháng 6 2023
a: Xét ΔAED vuông tại A và ΔDFC vuông tại D có
AD=DC
AE=DF
=>ΔAED=ΔDFC
=>FC=DE
b: Xét tứ giác DQPF có
I là trung điểm chung của DP và QF
DP vuông góc DF
=>DQPF là hình thoi
Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [C, D] Đoạn thẳng l: Đoạn thẳng [A, D] Đoạn thẳng m: Đoạn thẳng [C, F] Đoạn thẳng r: Đoạn thẳng [A, Q] Đoạn thẳng s: Đoạn thẳng [E, Q] Đoạn thẳng t: Đoạn thẳng [Q, C] Đoạn thẳng a: Đoạn thẳng [B, D] Đoạn thẳng b: Đoạn thẳng [B, F] Đoạn thẳng e: Đoạn thẳng [C, A] Đoạn thẳng f_1: Đoạn thẳng [B, E] Đoạn thẳng h_1: Đoạn thẳng [E, J] B = (-1, 0.2) B = (-1, 0.2) B = (-1, 0.2) C = (6.04, 0.2) C = (6.04, 0.2) C = (6.04, 0.2) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Giao điểm đường của h, i Điểm D: Giao điểm đường của h, i Điểm D: Giao điểm đường của h, i Điểm F: Giao điểm đường của c, l Điểm F: Giao điểm đường của c, l Điểm F: Giao điểm đường của c, l Điểm E: Giao điểm đường của n, k Điểm E: Giao điểm đường của n, k Điểm E: Giao điểm đường của n, k Điểm Q: Giao điểm đường của p, q Điểm Q: Giao điểm đường của p, q Điểm Q: Giao điểm đường của p, q Điểm I: Giao điểm đường của t, a Điểm I: Giao điểm đường của t, a Điểm I: Giao điểm đường của t, a Điểm J: Giao điểm đường của g_1, j Điểm J: Giao điểm đường của g_1, j Điểm J: Giao điểm đường của g_1, j
a) Do F đối xứng với C qua BE nên EB là đường trung trực của FC.
Vậy thì ta có ngay \(\Delta BFE=\Delta BCE\left(c-c-c\right)\Rightarrow\widehat{BFE}=\widehat{BCE}=90^o\)
Vậy thì \(\widehat{AFB}+\widehat{DFE}=90^o\)
Lại có góc DFE và góc AFQ là hai góc đối đỉnh nên \(\widehat{AFB}+\widehat{AFQ}=90^o\Rightarrow\widehat{AFB}=\widehat{AQF}\)
Vậy \(\Delta AQF\sim\Delta AFB\left(g-g\right)\)
b) Từ E kẻ \(EJ\perp QB\). Khi đó ta có EJ = BC. Gọi I là giao điểm của QC và BD.
Do AF// JE nên \(\Delta AQF\sim\Delta JQE\). Vậy thì \(\Delta JQE\sim\Delta DEF\left(\sim\Delta AQF\right)\)
\(\Rightarrow\frac{JE}{DF}=\frac{QE}{EF}\)
Hay \(\frac{BC}{DF}=\frac{QE}{EF}\Rightarrow\frac{BF}{DF}=\frac{QE}{EC}\left(1\right)\) (Do BE là trung trực nên BC = BF, FE = EC)
Ta cũng đã có \(\widehat{FED}=\widehat{AFB}\Rightarrow\widehat{QEC}=\widehat{BFD}\left(2\right)\)
Từ (1) và (2) suy ra \(\Delta QEC\sim\Delta BFD\left(c-g-c\right)\)
\(\Rightarrow\widehat{FQC}=\widehat{FBD}\)
Lại có \(\widehat{BFQ}=\widehat{BFA}+\widehat{AFQ}=90^o\)
Vậy nên \(\widehat{FQB}+\widehat{QBF}=\widehat{FQC}+\widehat{CQB}+\widehat{QBF}=\widehat{CQB}+\widehat{QBD}=90^o\)
Suy ra \(\widehat{AIB}=90^o\Rightarrow QC\perp BD.\)