Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [C, D] Đoạn thẳng l: Đoạn thẳng [A, D] Đoạn thẳng m: Đoạn thẳng [C, F] Đoạn thẳng r: Đoạn thẳng [A, Q] Đoạn thẳng s: Đoạn thẳng [E, Q] Đoạn thẳng t: Đoạn thẳng [Q, C] Đoạn thẳng a: Đoạn thẳng [B, D] Đoạn thẳng b: Đoạn thẳng [B, F] Đoạn thẳng e: Đoạn thẳng [C, A] Đoạn thẳng f_1: Đoạn thẳng [B, E] Đoạn thẳng h_1: Đoạn thẳng [E, J] B = (-1, 0.2) B = (-1, 0.2) B = (-1, 0.2) C = (6.04, 0.2) C = (6.04, 0.2) C = (6.04, 0.2) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm D: Giao điểm đường của h, i Điểm D: Giao điểm đường của h, i Điểm D: Giao điểm đường của h, i Điểm F: Giao điểm đường của c, l Điểm F: Giao điểm đường của c, l Điểm F: Giao điểm đường của c, l Điểm E: Giao điểm đường của n, k Điểm E: Giao điểm đường của n, k Điểm E: Giao điểm đường của n, k Điểm Q: Giao điểm đường của p, q Điểm Q: Giao điểm đường của p, q Điểm Q: Giao điểm đường của p, q Điểm I: Giao điểm đường của t, a Điểm I: Giao điểm đường của t, a Điểm I: Giao điểm đường của t, a Điểm J: Giao điểm đường của g_1, j Điểm J: Giao điểm đường của g_1, j Điểm J: Giao điểm đường của g_1, j
a) Do F đối xứng với C qua BE nên EB là đường trung trực của FC.
Vậy thì ta có ngay \(\Delta BFE=\Delta BCE\left(c-c-c\right)\Rightarrow\widehat{BFE}=\widehat{BCE}=90^o\)
Vậy thì \(\widehat{AFB}+\widehat{DFE}=90^o\)
Lại có góc DFE và góc AFQ là hai góc đối đỉnh nên \(\widehat{AFB}+\widehat{AFQ}=90^o\Rightarrow\widehat{AFB}=\widehat{AQF}\)
Vậy \(\Delta AQF\sim\Delta AFB\left(g-g\right)\)
b) Từ E kẻ \(EJ\perp QB\). Khi đó ta có EJ = BC. Gọi I là giao điểm của QC và BD.
Do AF// JE nên \(\Delta AQF\sim\Delta JQE\). Vậy thì \(\Delta JQE\sim\Delta DEF\left(\sim\Delta AQF\right)\)
\(\Rightarrow\frac{JE}{DF}=\frac{QE}{EF}\)
Hay \(\frac{BC}{DF}=\frac{QE}{EF}\Rightarrow\frac{BF}{DF}=\frac{QE}{EC}\left(1\right)\) (Do BE là trung trực nên BC = BF, FE = EC)
Ta cũng đã có \(\widehat{FED}=\widehat{AFB}\Rightarrow\widehat{QEC}=\widehat{BFD}\left(2\right)\)
Từ (1) và (2) suy ra \(\Delta QEC\sim\Delta BFD\left(c-g-c\right)\)
\(\Rightarrow\widehat{FQC}=\widehat{FBD}\)
Lại có \(\widehat{BFQ}=\widehat{BFA}+\widehat{AFQ}=90^o\)
Vậy nên \(\widehat{FQB}+\widehat{QBF}=\widehat{FQC}+\widehat{CQB}+\widehat{QBF}=\widehat{CQB}+\widehat{QBD}=90^o\)
Suy ra \(\widehat{AIB}=90^o\Rightarrow QC\perp BD.\)
a: Xét ΔAED vuông tại A và ΔDFC vuông tại D có
AD=DC
AE=DF
=>ΔAED=ΔDFC
=>FC=DE
b: Xét tứ giác DQPF có
I là trung điểm chung của DP và QF
DP vuông góc DF
=>DQPF là hình thoi
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: AF//CE
Xét hình tứ giác đấy có:
`=>AE//// CF`
`AE=CF`
Có bốn cạnh như trên suy ra là hình bình hành.
`=>` `AF////CE`
∆AQF~∆FAB ???
Ý là ∆AQF = ∆FAB ak