Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: DCHN là hình chữ nhật
=>DH cắt CN tại trung điểm của mỗi đường và bằng nhau
=>O là trung điểm chung của DH và CN; DH=CN
=>DO=OH=CO=ON=1/2DH=1/2CN
Xét ΔDCN vuông tại D có DM là đường cao
nên CM*CN=CD^2
=>CD^2=CM*2*DO
b: Xét ΔDNO có
NA,DM là đường cao
NA cắt DM tại I
=>I là trực tâm
=>OI vuông góc DN tại E
=>OE//NH
Xét ΔDNH có OE//NH
nên OE/NH=DO/DH=1/2
=>OE=1/2NH
Xét ΔDNH vuông tại N có NA là đường cao
nên HA*HD=NH^2
=>1/4*HA*HD=1/4NH^2=(1/2NH)^2=OE^2
A B C D M N H I
Kẽ NI // BC
\(\Rightarrow\frac{DN}{DC}=\frac{AI}{AB}=\frac{AM}{AH}\)
\(\Rightarrow\)MI // BH
\(\Rightarrow\widehat{IMB}=\widehat{MBH}\left(1\right)\)
Tứ giác IBCN có
\(\widehat{IBC}=\widehat{BIN}=\widehat{BCN}\)
\(\Rightarrow\)Tứ giác IBCN là hình chữ nhật
\(\Rightarrow\widehat{NBC}=\widehat{BCI}\left(2\right)\)
Xét tứ giác IMCB có
\(\widehat{IMC}=90\)(vì IM // BH và BH vuông góc AC)\
\(\widehat{IBC}=90\)
\(\Rightarrow\)Tứ giác IMCB là tứ giác nội tiếp đường tròn
\(\Rightarrow\widehat{IMB}=\widehat{ICB}\left(3\right)\)(cùng chắn cung IB)
Từ (1),(2),(3) \(\Rightarrow\widehat{MBH}=\widehat{NBC}\)
\(\Rightarrow\widehat{BMC}=90-\widehat{MBH}=90-\widehat{NBC}=\widehat{CNB}\)
\(\Rightarrow\)Tứ giác MBCN nội tiếp đường tròn
Hay M,B,C,N cùng nằm trên một đường tròn