K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

31 tháng 8 2019

viết đề sai rùi bạn

b) chứng minh tứ giác POMQ LÀ hình chữ nhật chứ ko phải chứng minh AQMO LÀ HÌNH CHỮ NHẬT OK

18 tháng 12 2020

Hình vẽ:

a, \(\Delta AHD\) vuông tại \(H\)\(HD\perp AB\Rightarrow AD.AB=AH^2\)

\(\Delta AHC\) vuông tại \(H\)\(HE\perp AC\Rightarrow AE.AC=AH^2\)

\(\Rightarrow AD.AB=AE.AC\)

b, Ta cần chứng minh \(NE\perp DE;MD\perp DE\)

Ta có \(\Delta AHE\sim\Delta ACH\left(g-g\right)\)

\(\Rightarrow\widehat{AHE}=\widehat{ACH}\)

Vì ADHE là hình chữ nhật nên \(\widehat{ADE}=\widehat{AHE}\)

\(\Rightarrow\widehat{ADE}=\widehat{ACH}\)

Lại có \(\widehat{MDB}=\widehat{MBD}\Rightarrow\widehat{ADE}+\widehat{MDB}=90^o\)

\(\Rightarrow\widehat{MDE}=90^o\Rightarrow MD\perp DE\)

Tương tự \(NE\perp DE\)

\(\Rightarrowđpcm\)

6 tháng 6 2018

chịu thôi????????????????????????????

25 tháng 1 2019

A C B D P O M K L S T E F

Gọi E và F lần lượt là trung điểm của PA và PD. 

Ta thấy: \(\Delta\)PAK vuông tại K có trung tuyến KE => KE = 1/2.AP. Mà MF là đường trung bình \(\Delta\)PAD

Nên KE = MF (=1/2AP). Tương tự: FL = ME. Ta có: ^KEM = ^MFL (= ^PFM + Sđ(BC = ^PEM + Sđ(BC )

Suy ra: \(\Delta\)KEM = \(\Delta\)MFL (c.g.c) => KM = ML (Cạnh tương ứng) 

Ta thấy: ^KML = ^EMF - ^EMK - ^FML = 1800 - ^PFM - ^FLM - ^FML (^EMK = ^ FLM vì \(\Delta\)KEM = \(\Delta\)MFL)

= ^PFL = 2.^PDL = 2.^PAK => ^KML = 2.^PDL = 2.^PAK

Ta lại có: ^BDT = ^BDC - ^TDL = 1/2.^KML - (900 - ^DML) = 1/2.^KML - ^OML = ^OMK - 1/2.^KML

= ^OMK - ^PAK = ^SAK - ^PAK = ^CAS => ^BDT = ^CAS

Mặt khác: ^MTL = ^AOC = 2.^MDL (=Sđ(AC ) => \(\Delta\)MLT ~ \(\Delta\)ACO (g.g)

=> \(\frac{LT}{CO}=\frac{ML}{AC}\)=> LT. AC = ML.CO = MK.BO (Do ML = MK). Tương tự \(\Delta\)KSM ~ \(\Delta\)BOD

Từ đó; LT.AC = MK.BO = KS.BD => DT.AC = AS.DB => \(\frac{DT}{AS}=\frac{DB}{AC}\). Kết hợp với ^BDT = ^CAS (cmt)

=> \(\Delta\)CSA ~ \(\Delta\)BTD (c.g.c) => \(\frac{CS}{BT}=\frac{SA}{TD}=\frac{KS}{LT}\)=> KS.BT = CS.LT (đpcm).