K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2023

a) Xét ΔHAD và ΔABD ta có:

\(\widehat{D}\) chung

\(\widehat{DAB}=\widehat{DHA}=90^0\)

⇒ΔHAD ∼ ΔABD (g.g)(1)

b) Xét ΔHBA và ΔABD ta có:

\(\widehat{B}\) chung

\(\widehat{AHB}=\widehat{DAB}=90^0\)

→ΔHBA ∼ ΔABD (g.g)(2)

Từ (1) và (2) →ΔHAD∼ΔHBA

\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)

c) Xét ΔABD vuông tại A ta có:

\(BD^2=AB^2+AD^2\)

         \(=8^2+6^2\)

         \(=100\)

\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)

Vì ΔΔHAD ∼ ΔABD (cmt)

\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

5 tháng 5 2023

Hình vẽ:

H 6cm D C A B 8cm

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng vơí ΔABD

b: ΔHAD đồng dạng với ΔABD

=>AD/BD=HD/AD

=>AD^2=DH*DB

c: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

DH=AD^2/BD=6^2/10=3,6cm

d: ΔHAD đồng dạng với ΔABD

=>S HAD/S ABD=(AD/BD)^2=9/25 và k=AD/BD=3/5

19 tháng 7 2019

Tham khảo lời giải tại link : https://h.vn/hoi-dap/question/249043.html

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng vớiΔABD

b: ΔABD vuông tại A có AH là đường cao

nên AD^2=DH*DB

c: AH=6*8/10=4,8cm

HD=6^2/10=3,6cm

16 tháng 2 2021

100 nha

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)

hay \(AD^2=HD\cdot BD\)

19 tháng 5 2022

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

ˆABH=ˆBDCABH^=BDC^

Do đó: ΔAHBΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

ˆADHADH^ chung

Do đó: ΔADHΔBDA

Suy ra: ADBD=HDDAADBD=HDDA

hay AD2=HDBD

6 tháng 4 2018

Hình bạn tự vẽ nha!

a)Xét tam giác HBA và tam giác ABD có:

góc AHB=góc DAB(=90độ)

góc B chung

=> tam giác HBA đồng dạng tam giác ABD (g-g)

b) xét tam giác HDA và tam giác ADB có

góc AHD =góc DAB(=90độ)

góc D chung

=> tam giác HDA đồng dạng tam giác ADB (g-g)

=>AD/BD=HD/BD=>AD^2=DH.BD

c)vì ABCD là hcn=> BC=AD=6cm

tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)

=>BD^2=6^2+8^2

=>BD=10(cm)

Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)

tam giác ADH vuông tại H

=>Ad^2=AH^2+HD^2(ĐL Pytago)

=>6^2=AH^2+3,6^2

=>AH=4.8(cm)