K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

giúp mình với sắp thi rồi

18 tháng 12 2021

Các bạn làm giúp mình vs !!!  Mai mình phải nộp ròi

18 tháng 12 2021

ABCDIKEFNM----

a) Vì ABCD là hcn => AB//CD; AB=CD

Mà E,F lần lượt là trung điểm của AB và CF

=> EA=EB=1/2AB;DF=FC=1/2DC và EA//FC

=> EA=FC;EA//FC

Do đó AECF là hbh ( 2 cạnh đối // và = nhau)

b) 

Vì ABCD là hcn => AB//CD; AB=CD

Mà E,F lần lượt là trung điểm của AB và CF

=> EA=EB=1/2AB;DF=FC=1/2DC và EA//DF

=> EA=DF;EA//DF

=> AEFD là hbh (  ( 2 cạnh đối // và = nhau)

Lại có: ^ADF=90o ( ABCD là hcn)

Do đó:  AEFD là hcn. ( hbh có 1 góc vuông) (đpcm)

c) Vì A đối xứng với N qua D (gt)

=> AN là đường trung trực của ^MAF

=> MA=AF (1)

Vì M đối xứng với F qua D

<=>MF là đường trung trực của ^AMN

=>MA=MN (2)

<=> FM là đường trực của ^AFN

=>AF=NF (3)

Từ (1);(2) và (3) => AM=MN=NF=AF

Nên: AMNF là hình thoi (tứ giác có 4 góc vuông ) (đpcm)

d) ngu câu hình cuối nên bỏ đi để làm n'

mình chứng minh DK đg trung tuyến nw o khả quan lắm :)) nên bỏ 

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình hành.b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hìnhgì?Bài 9: Cho tam giác ABC, trung tuyến AM....
Đọc tiếp

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.

11
3 tháng 3 2020

Bài 12:

:v Mình sửa P là trung điểm của EG

A B C D E O Q N F G M I 1 2 P

a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)

\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)

Xét tam giác EAC và tam giác BAG có:

\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)

\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )

+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG 

Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)

\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)

Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )

Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )

\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)

Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)

\(\Rightarrow\widehat{IOC}=90^0\)

\(\Rightarrow BG\perp EC\)

b) Vì ABDE là hình vuông (gt)

\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)

Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)

\(\Rightarrow QM\)là đường trung bình của tam giác EBC

\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)

CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)

Mà EC=BG (cm câu a )

\(\Rightarrow QM=MN=NP=PQ\)

Xét tứ giác MNPQ  có \(QM=MN=NP=PQ\left(cmt\right)\)

\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)

CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )

Mà \(BG\perp EC\left(cmt\right)\)

\(\Rightarrow MN\perp MQ\)

\(\Rightarrow\widehat{QMN}=90^0\)(2)

Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb ) 

\(\)

4 tháng 3 2020

Bài 11:

A B C H D P E Q

a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)

\(\Rightarrow\widehat{DAE}=180^0\)

\(\Rightarrow D,A,E\)thẳng hàng

b) Vì AHBD là hình chữ nhật (gt)

\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)

Mà P là trung điểm của AB (gt)

\(\Rightarrow P\)là trung điểm của DH  (1)

\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)

\(\Rightarrow PH=PA\)

\(\Rightarrow P\in\)đường trung trục của AH

CMTT Q thuộc đường trung trực của AH

\(\Rightarrow PQ\)là đường trung trực của AH

c)  Từ (1) => P thuộc DH

=> D,P,H thẳng hàng

d) Vì ABCD là hình chữ nhật (gt)

=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ

=> góc DHA= 45 độ

CMTT AHE =45 độ

=> góc DHA+ góc AHE=90 độ

Hay góc DHE=90 độ

=> DH vuông góc với HE

15 tháng 7 2016

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng g: ?o?n th?ng [B, C] ?o?n th?ng h: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [D, A] ?o?n th?ng j: ?o?n th?ng [Q, P] ?o?n th?ng k: ?o?n th?ng [M, N] ?o?n th?ng l: ?o?n th?ng [N, P] ?o?n th?ng m: ?o?n th?ng [Q, M] ?o?n th?ng n: ?o?n th?ng [B, D] ?o?n th?ng r: ?o?n th?ng [P, F] ?o?n th?ng s: ?o?n th?ng [C, E] A = (-2.9, 1.48) A = (-2.9, 1.48) A = (-2.9, 1.48) B = (2.68, 1.4) B = (2.68, 1.4) B = (2.68, 1.4) D = (-4.16, 5.6) D = (-4.16, 5.6) D = (-4.16, 5.6) C = (3.5, 7.6) C = (3.5, 7.6) C = (3.5, 7.6) ?i?m M: Trung ?i?m c?a f ?i?m M: Trung ?i?m c?a f ?i?m M: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a g ?i?m P: Trung ?i?m c?a h ?i?m P: Trung ?i?m c?a h ?i?m P: Trung ?i?m c?a h ?i?m Q: Trung ?i?m c?a i ?i?m Q: Trung ?i?m c?a i ?i?m Q: Trung ?i?m c?a i ?i?m E: Giao ?i?m c?a p, n ?i?m E: Giao ?i?m c?a p, n ?i?m E: Giao ?i?m c?a p, n ?i?m F: Giao ?i?m c?a q, n ?i?m F: Giao ?i?m c?a q, n ?i?m F: Giao ?i?m c?a q, n ?i?m G: Giao ?i?m c?a j, n ?i?m G: Giao ?i?m c?a j, n ?i?m G: Giao ?i?m c?a j, n ?i?m H: Giao ?i?m c?a k, n ?i?m H: Giao ?i?m c?a k, n ?i?m H: Giao ?i?m c?a k, n

Cô hướng dẫn nhé.

a.MN, PQ cùng song song và bằng một nửa AC, vậy MNPQ là hình bình hành.

b. Em nhìn đc nhé.

c. Cho các điểm như hình vẽ. Kẻ CE, PF vuông góc BD. Khi đó ta có CE = 2DF.

Ta có: \(\frac{S_{PNHG}}{S_{DCB}}=\frac{GH.PF}{\frac{1}{2}AC.CE}=\frac{GH.PF}{PN.CE}=\frac{PF}{CE}=\frac{1}{2}\)

Tương tự \(\frac{S_{MQGH}}{S_{ABD}}=\frac{1}{2}\Rightarrow\frac{S_{MNPQ}}{S_{ABCD}}=\frac{1}{2}\)

Từ đó ta tìm đc \(S_{ABCD}=32\)