K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

11 tháng 5 2016

a) Ta có: góc ADH = góc DBC (slt)

Góc AHD = góc BCD

nên tam giác ADH đồng dạng tam giác DBC.

b)Sadh/Sdbc=(AD/DB)^2=9/25

c)AHxBD=ADxAB (2 cách tính diện tích tam giác vuông)

AH=4,8 (cm)

d) Tam giác AHD đồng dạng tam giác BHA

=>\(\frac{AD}{AB}=\frac{HD}{HA}=\frac{2DM}{2AN}=\frac{DM}{AN}\)

Tam giác ADM đồng dạng tam giác BAN theo TH c.g.c

a: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có

góc ADH=góc BCA

=>ΔADH đồng dạng với ΔCBA

c: Xét ΔADM và ΔACN có

AD/AC=DM/CN

góc ADM=góc ACN

=>ΔADM đồng dạng với ΔACN