Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
a) Tg HAB có NB=NH, MA=MH
=> MN là đường tb của tg HAB
=> MN//AB và MN=1/2AB
Mà AB//CD và AB=CD
=> MN//CD và MN=CD=KC(Vi K là trung diem CD)
hay MN//KC và MN=KC
Tứ giac MNCK có MN//KC và MN=KC
=> MNCK la hbh
b) Tg BCM có
BH_|_MC(gt)
MN_|_BC (vì MN//AB mà AB_|_BC)
MN cắt BH tại N
=> N la trực tam cua tg BCM
=> CN_|_MB
mà CN//MK (do tu giac MNCK la hbh)
=> MK_|_MB hay \(\widehat{BMK}\)=900
Bài 3:
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
Gọi N là trung điểm BH =>MN đường trung bình của tam giác ABH
Ta có MN//AB và MN = \(\frac{1}{2}AB\)
Mà CK//AB và CK=\(\frac{1}{2}CD=\frac{1}{2}AB\) => CK=MN
=>MNCK là hình bình hành
=> CK//MK (1)
Vì MN//AB, AB vuông góc BC nên MN vuông góc BC.
Suy ra N là trực tâm tam giác BCM CN vuông góc với BM (2)
Từ (1) và (2) suy ra MK vuông góc với BM
a:
Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
b:Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
Vì N là trực tâm
nên CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
A B C D H M K N E
Gọi N là trung điểm của BH
=> MN là đường trung ình của tam giác ABH
=>MN//AB, MN=1/2 AB
Mà AB=CD và AB//CD
=>MN//CD, MN = 1/2 CD
=> MNCK là hình bình hành
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (E thuộc BC)
Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK (đpcm)