K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC

17 tháng 11 2023

Xét ΔABD có

H,O lần lượt là trung điểm của BA,BC

=>HO là đường trung bình của ΔABD

=>HO//AD và \(HO=\dfrac{AD}{2}\)

\(HO=\dfrac{AD}{2}\)

\(AK=\dfrac{AD}{2}\)

Do đó: HO=AK

Xét tứ giác AHOK có

HO//AK

HO=AK

Do đó: AHOK là hình bình hành

Hình bình hành AHOK có \(\widehat{HAK}=90^0\)

nên AHOK là hình chữ nhật

Gọi N là giao điểm của AO và HK

AHOK là hình chữ nhật

=>AO=HK và AO cắt HK tại trung điểm của mỗi đường

=>AO=HK và N là trung điểm chung của AO và HK

=>\(AN=ON=HN=KN=\dfrac{AO}{2}=\dfrac{HK}{2}\left(1\right)\)

ΔAMO vuông tại M

mà MN là đường trung tuyến

nên \(MN=\dfrac{AO}{2}\left(2\right)\)

Từ (1),(2) suy ra \(MN=\dfrac{HK}{2}\)

Xét ΔKMH có

MN là đường trung tuyến

\(MN=\dfrac{HK}{2}\)

Do đó: ΔKMH vuông tại M

=>KM\(\perp\)MH tại M