K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

Giải bài 48 trang 125 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) Ta có: các mặt bên của hình chóp đều là những tam giác đều cạnh 5cm. Đường cao của mỗi mặt bên:

Giải bài 48 trang 125 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 48 trang 125 SGK Toán 8 Tập 2 | Giải toán lớp 8

b) Mặt bên của hình chóp lục giác đều là tam giác cân có cạnh bên 10cm, cạnh đáy 6cm.

Giải bài 48 trang 125 SGK Toán 8 Tập 2 | Giải toán lớp 8

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng1/ Trong các hình sau, hình không có tâm đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi2/ Trong các hình sau, hình không có trục đối xứng là:A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ...
Đọc tiếp

KIỂM TRA 1 Tiết – HÌNH HỌC 8 CHƯƠNG I

 

I) TRẮC NGHIỆM: ( 2đ) Hãy khoanh tròn chữ cái đứng trước kết quả đúng

1/ Trong các hình sau, hình không có tâm đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

2/ Trong các hình sau, hình không có trục đối xứng là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình thoi

3/ Một hình thang có 2 đáy dài 6cm và 4cm. Độ dài đường trung bình của hình thang đó là:

A . 10cm B . 5cm C . √10 cm D . √5cm

4/ Tứ giác có hai cạnh đối song song và hai đường chéo bằng nhau là:

A . Hình vuông B . Hình thang cân C . Hình bình hành D . Hình chữ nhật

5/ Một hình thang có một cặp góc đối là: 1250 và 650. Cặp góc đối còn lại của hình thang đó là:

A . 1050 ; 450 B . 1050 ; 650

C . 1150 ; 550 D . 1150 ; 650

6/ Cho tứ giác ABCD, có ∠A = 800; ∠B =1200, ∠D = 500. Số đo góc C là?

A. 1000 , B. 1500, C. 1100, D. 1150

7/ Góc kề 1 cạnh bên hình thang có số đo 750, góc kề còn lại của cạnh bên đó là:

A. 850 B. 950 C. 1050 D. 1150

8/ Độ dài hai đường chéo hình thoi là 16 cm và 12 cm. Độ dài cạnh của hình thoi đó là:

A 7cm, B. 8cm, C. 9cm, D. 10 cm

II/TỰ LUẬN (8đ)

Bài 1: ( 2,5 đ) Cho tam giác ABC cân tại A, M là trung điểm của BC, Từ M kẻ các đường ME song song với AC ( E ∈ AB ); MF song song với AB ( F ∈ AC ). Chứng minh Tứ giác BCEF là hình thang cân.

Bài 2. ( 5,5đ)Cho tam giác ABC góc A bằng 90o. Gọi E, G, F là trung điểm của AB, BC, AC. Từ E kẻ đường song song với BF, đường thẳng này cắt GF tại I.

a) Tứ giác AEGF là hình gì ?

b) Chứng minh tứ giac BEIF là hình bình hành

c) Chứng minh tứ giác AGCI là hình thoi

d) Tìm điều kiện để tứ giác AGCI là hình vuông.

1

Bài 1: 

Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

MF//AB

DO đó: F là trung điểm của AC

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của AC
Do đó: EF là đường trung bình

=>EF//BC

hay BEFC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BEFC là hình thang cân

4 tháng 12 2016
Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh

b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân

c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
 
 
1 tháng 12 2016
  1. Bài 1
    a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
    và MN=1/2DC => MN= DE(2)
    từ (1)và (2) => MNED là hbh

    b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
    Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
    => tam giác ADM cân tại M => MDA = DAM
    => DEN= MAD (3)
    MN//DE=> MN//AE => AMNE là hình thang (4)
    từ (3)và (4) => AMNE là hình thang cân

    c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
    Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B
     
    nhuquynhdat, 17 Tháng mười hai 2013
    #2
     
  2. nhuquynhdat

    nhuquynhdatGuest

     

    bài 2

    a) AB//CD => AB//CE(1)
    Xét tam giác ADE có AH là đg` cao
    lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
    => tam giác ADE cân tại A
    => ADE=AED(goác đáy tam giác cân)
    mặt khác ABCD là hình thang cân => ADC=góc C
    => góc C= AED
    mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
    từ (1)và (2) => ABCE là hbh

    b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
    DH=HE(gt)
    AE//DF(gt)=> AEH=FDH(SLT)
    =>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF

    c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
    mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
    lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg

10 tháng 5 2017

(B) 24cm3

23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)