\(\dfrac{a\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2022

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(AC=a\sqrt{2}\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{\sqrt{3}}{3}\)

\(\Rightarrow\widehat{SCA}=30^0\)

21 tháng 2 2019

Đáp án là B

Vì SA vuông góc với đáy nên góc φ  giữa SC và mặt phẳng (ABCD) bằng góc giữa SC và hình chiếu AC của nó lên đáy. Suy ra  φ = S C A ^  (vì  S C A ^ là góc nhọn trong tam giác vuông SAC)

Trong hình chữ nhật ABCD, ta có AC=a 3 . Suy ra tam giác SAC vuông cân ở A.

Vậy, số đo của góc giữa SC và mặt phẳng (ABCD) bằng 450

29 tháng 6 2019

Chọn A.

Vì SA vuông góc với đáy nên góc (SC,(ABCD)) = SCA.

Trong hình vuông ABCD có: AC = a 2  theo giả thiết, SA = a 2 => tam giác SAC vuông cân tại A

=> góc SCA = 45 °

10 tháng 1 2017

Đáp án A

Góc giữa SC và (ABCD) là  S C A ^

  ⇒ S C A ^ = 30 o

16 tháng 4 2019

Chọn D.

Vì  S A ⊥ ( A B C D )  nên AC là hình chiếu vuông góc của SC lên(ABCD).

Góc giữa giữa SC và mp (ABCD) bằng góc SC&AC ⇒ α = SCA.

Xét tam giác SAC vuông tại A có

⇒ α = 60 o

21 tháng 11 2019

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

27 tháng 7 2019

Chọn đáp án A

Gọi 

Ta có: 

Mặt khác 

=> OI là đường vuông góc chung.

=> d(BD;SC) = OI

Kẻ 

OI là đường trung bình của tam giác AKC.

Ta có: 

Xét tam giác SAC vuông tại A: 

Vậy khoảng cách giữa BDSC bằng  a 6 6

22 tháng 7 2018

9 tháng 5 2017

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).