K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TA
2 tháng 4 2016
S B C D A M N
Ta có : MN là đường trung bình của tam giác SAD
Suy ra MN song song với AD và \(MN=\frac{1}{2}AD\Rightarrow\begin{cases}MN||BC\\MN=BC\end{cases}\)\(\Rightarrow\) BCNM là hình bình hành (1)
Mặt khác
\(\begin{cases}BC\perp AB\\BC\perp SA\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp BM\left(2\right)\)
Từ (1) và (2) ra suy ra BCNM là hình chữ nhật
Ta có :
\(S_{BCNM}=2S_{\Delta BCM}\Rightarrow V_{S.BCNM}=2V_{S.BCM}\)
\(V_{S.BCM}=V_{C.SBM}=\frac{1}{3}CB.S_{\Delta SBM}=\frac{1}{6}CB.S_{\Delta SAB}=\frac{1}{6}CB.\frac{1}{2}SA.AB=\frac{a^3}{6}\)
Vậy \(V_{S.BCNM}=\frac{a^3}{3}\)
a) Vì I là trọng tâm của tam giác ABD nên \(AI=\dfrac{1}{3}AC\)