K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 1 2024

MN song song BD (đường trung bình)

Do đó qua P kẻ đường thẳng song song BD kéo dài cắt AB tại E

=>DPEB là hình bình hành (2 cặp cạnh đối song song)

=>EB=DP=AB/2

EA=AB+EB=3AB/2

24 tháng 12 2021

24 tháng 12 2021

Chọn B

23 tháng 9 2018

NV
20 tháng 9 2021

Gọi O là tâm đáy \(\Rightarrow SO=\left(SBD\right)\cap\left(SAC\right)\)

Trong mp (SAC), gọi E là giao điểm SO và MN

MN là đường trung bình tam giác SAC \(\Rightarrow\) E là trung điểm SO

Trong mp (SAD), nối BE kéo dài cắt SD tại K

\(\Rightarrow K=SD\cap\left(BMN\right)\)

Áp dụng định lý Menelaus cho tam giác SOD:

\(\dfrac{ES}{EO}.\dfrac{BO}{BD}.\dfrac{KD}{KS}=1\Rightarrow1.\dfrac{1}{2}.\dfrac{KD}{SK}=1\Rightarrow KD=2SK\)

\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}\)

NV
20 tháng 9 2021

undefined

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

9 tháng 6 2018

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm thiết diện :

Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN

Trong mp(SAD), gọi Q = MF ∩ SD

Trong mp(SAB), gọi R = ME ∩ SB

Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM

Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.

b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .

Trong (SAC), SO ∩ MH = I

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Vậy I = SO ∩ (MNP).

20 tháng 12 2021
a. M là điểm chung thứ nhất của (MCB) và (SAD). Ta có: CB // AD. Vậy giao tuyến của (MCB) và (SAD) là đường thẳng d kẻ từ M và song song với AD b. Trong (SAD): d \cap∩ SD = F. Vậy thiết diện cần tìm là hình thang MFCB.