K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: AM cắt CD tại E nên E thuộc (AMN) và (SCD)

Mà N thuộc (AMN) và (SCD)

Do đó: EN là giao tuyến của hai mặt phẳng cần tìm. 

b) Ta có: En cắt SC tại F nên F thuộc (AMN) và (SBC) 

Mà M thuộc (AMN) và (SBC) 

Do đó: FM là giao tuyến của hai mặt phẳng cần tìm. 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

- Ta có: S là điểm chung của hai mặt phẳng (SAD) và (SBC) 

Từ S kẻ Sx sao cho Sx // AD // BC. Vậy Sx là giao tuyến của hai mặt phẳng (SAD) và (SBC).

- Ta có: M, P là trung điểm của SA, SD. Suy ra MP // AD // BC 

Có: N là điểm chung của hai mặt phẳng (MNP) và (ABCD)

Từ N kẻ NQ  sao cho NQ // AD.

Vậy NQ là giao tuyến của hai mặt phẳng (MNP) và (ABCD). 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Gọi P là giao điểm của CN và AB

Ta có \(P \in CN\)suy ra \(P \in (CMN)\)

Suy ra P là giao điểm của mặt phẳng (CMN) với đường thẳng AB

Gọi E là giao điểm của MB và SB

Ta có \(E \in MP\)suy ra\(E \in (CMN)\)

Suy ra E là giao điểm của mặt phẳng (CMN) với đường thẳng SB

b) Vì M và E cùng thuộc (CMN) và (SAB) nên ME  là giao tuyến của hai mặt phẳng (CMN) và (SAB)

Vì E và C cùng thuộc (CMN) và (SBC) nên EC là giao tuyến của hai mặt phẳng (CMN) và (SBC)

31 tháng 3 2017

a) (SAD) ∩ (SBC) = SE

b) Trong (SBE): MN ∩ SE = F

Trong (SAE): AF ∩ SD = P là điểm cần tìm

c) Thiết diện là tứ giác AMNP

TenAnh1 A = (-0.14, -7.4) A = (-0.14, -7.4) A = (-0.14, -7.4) B = (14.46, -7.36) B = (14.46, -7.36) B = (14.46, -7.36) C = (-3.74, -5.6) C = (-3.74, -5.6) C = (-3.74, -5.6) D = (11.62, -5.6) D = (11.62, -5.6) D = (11.62, -5.6)

7 tháng 11 2019

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm (SAD) ∩ (SBC)

Gọi E= AD ∩ BC. Ta có:

Giải bài 3 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Do đó E ∈ (SAD) ∩ (SBC).

mà S ∈ (SAD) ∩ (SBC).

⇒ SE = (SAD) ∩ (SBC)

b) Tìm SD ∩ (AMN)

+ Tìm giao tuyến của (SAD) và (AMN) :

Trong mp (SBE), gọi F = MN ∩ SE :

F ∈ SE ⊂ (SAD) ⇒ F ∈ (SAD)

F ∈ MN ⊂ (AMN) ⇒ F ∈ (AMN)

⇒ F ∈ (SAD) ∩ (AMN)

⇒ AF = (SAD) ∩ (AMN).

+ Trong mp (SAD), gọi AF ∩ SD = P

⇒ P = SD ∩ (AMN).

c) Tìm thiết diện với mp(AMN):

(AMN) ∩ (SAB) = AM;

(AMN) ∩ (SBC) = MN;

(AMN) ∩ (SCD) = NP

(AMN) ∩ (SAD) = PA.

⇒ Thiết diện cần tìm là tứ giác AMNP.

NV
23 tháng 12 2022

a.

Do N là trọng tâm tam giác ABC \(\Rightarrow\) N là giao điểm AK và BO

Hay A,N,K,F thẳng hàng

\(\Rightarrow\left(AMN\right)\cap\left(SCD\right)=MF\)

b.

Trong mp (SCD) nối FM kéo dài cắt SD tại I

Dễ dàng nhận thấy \(SO=\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}M\in SC\in\left(SAC\right)\\M\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow AM=\left(SAC\right)\cap\left(AMN\right)\)

\(N\in BD\in\left(SBD\right)\Rightarrow N\in\left(AMN\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}I\in SD\in\left(SBD\right)\\I\in\left(AMN\right)\end{matrix}\right.\) \(\Rightarrow IN=\left(SBD\right)\cap\left(AMN\right)\)

\(\Rightarrow\) 3 mặt phẳng (AMN), (SAC), (SBD) cắt nhau theo 3 giao tuyến phân biệt SO, AM, IN nên 3 đường thẳng này song song hoặc đồng quy

Mà SO cắt AM tại E \(\Rightarrow SO;AM;NI\) đồng quy tại E

Hay N;E;I thẳng hàng

M là trung điểm SC, O là trung điểm AC \(\Rightarrow\) E là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{1}{3}\)

Theo giả thiết N là trọng tâm ABC \(\Rightarrow\dfrac{ON}{OB}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{OE}{OS}=\dfrac{ON}{OB}\Rightarrow EN||SB\Rightarrow NI||SB\Rightarrow NI||\left(SBC\right)\)

NV
23 tháng 12 2022

c.

Do \(CF||AB\), áp dụng định lý Talet:

\(\dfrac{KF}{AK}=\dfrac{KC}{KB}=1\Rightarrow KF=AK\)

Do \(AD||BK\) \(\Rightarrow\dfrac{KN}{AN}=\dfrac{BK}{AD}=\dfrac{1}{2}\Rightarrow KN=\dfrac{1}{2}AN\)

\(\Rightarrow KN=\dfrac{1}{2}\left(AK-KN\right)\Rightarrow KN=\dfrac{1}{3}AK=\dfrac{1}{3}KF\)

\(\Rightarrow KF=3KN=3\left(NF-KF\right)\)

\(\Rightarrow KF=\dfrac{3}{4}NF\)

Theo giả thiết M, K lần lượt là trung điểm SC, BC \(\Rightarrow MK\) là đường trung bình tam giác SBC

\(\Rightarrow MK||SB\Rightarrow MK||IN\) (theo c/m câu b)

Áp dụng định lý Talet:

\(\dfrac{KM}{IN}=\dfrac{KF}{NF}=\dfrac{3}{4}\Rightarrow KM=\dfrac{3}{4}IN\)

\(\Rightarrow d\left(M;AF\right)=\dfrac{3}{4}d\left(I;AF\right)\)

\(\Rightarrow\dfrac{S_{\Delta FKM}}{S_{\Delta KAI}}=\dfrac{\dfrac{1}{2}.d\left(M;KF\right).KF}{\dfrac{1}{2}d\left(I;AK\right).AK}=\dfrac{3}{4}.1=\dfrac{3}{4}\)

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

24 tháng 10 2023

 a) Gọi \(O=AC\cap BD\). Khi đó \(O\in\left(SAC\right)\cap\left(SBD\right)\). Lại có \(S\in\left(SAC\right)\cap\left(SBD\right)\) nên SO chính là giao tuyến của (SAC) và (SBD).

 b) Trong mp (AMNK) cho \(AN\cap MK=L\). Do \(AN\subset\left(SAC\right),MK\subset\left(SBD\right)\) nên \(L\in\left(SAC\right)\cap\left(SBD\right)\) nên \(L\in SO\)\(\Rightarrow\) L là trọng tâm tam giác SAC \(\Rightarrow\dfrac{SL}{LO}=2\). Mà \(\dfrac{SM}{MB}=2\) nên \(\dfrac{SL}{LO}=\dfrac{SM}{MB}\Rightarrow\) LM//BO hay MK//BD, suy ra đpcm.