K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2024

À, tưởng dài mà thực ra cũng dễ thôi, vì toàn điểm đặc biệt cả.

Gọi O là tâm đáy \(\Rightarrow I\) là giao AN và SO

\(\Rightarrow I\) là trọng tâm SAC \(\Rightarrow\dfrac{SI}{SO}=\dfrac{2}{3}\)

Gọi E là giao điểm CM và BD, trong mp (SCM) nối MN cắt SE tại J

E là trọng tâm ABC \(\Rightarrow\dfrac{BE}{BO}=\dfrac{2}{3}\)

Menelaus tam giác BOI:

\(\dfrac{BE}{EO}.\dfrac{OS}{SI}.\dfrac{IJ}{JB}=1\Rightarrow2.\dfrac{3}{2}.\dfrac{IJ}{JB}=1\Rightarrow JB=3IJ\)

\(\Rightarrow IB-IJ=3IJ\Rightarrow\dfrac{IB}{IJ}=4\)

NV
23 tháng 1 2024

loading...

17 tháng 11 2023

a: Gọi O là giao điểm của AC và BD

Chọn mp(SAC) có chứa AN

\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi I là giao điểm của SO với AN

=>I là giao điểm của AN với mp(SBD)

Chọn mp(AMN) có chứa MN

\(B\in AM\subset\left(AMN\right)\)

\(B\in BD\subset\left(SBD\right)\)

Do đó: \(B\in\left(AMN\right)\cap\left(SBD\right)\)

mà \(I\in\left(AMN\right)\cap\left(SBD\right)\)

nên (AMN) giao (SBD)=BI

Gọi K là giao điểm của BI với MN

=>K là giao điểm của MN với mp(SBD)

b: K là giao điểm của BI với MN

=>B,I,K thẳng hàng

d: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC và O là trung điểm của BD

Xét ΔSAC có

O,N lần lượt là trung điểm của CA,CS

=>ON là đường trung bình

=>ON//SA và ON=SA/2

Xét ΔINO và ΔIAS có

\(\widehat{INO}=\widehat{IAS}\)

\(\widehat{NIO}=\widehat{AIS}\)

Do đó: ΔINO đồng dạng với ΔIAS

=>\(\dfrac{IN}{IA}=\dfrac{NO}{AS}=\dfrac{1}{2}\)

17 tháng 6 2018

Chứng minh B, J, I thẳng hàng. Áp dụng định lí Mê-nê-la-uýt vào tam giác IAB ta được IJ/JB = 1/4.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

10 tháng 12 2019

Trong mặt phẳng (SAC) : AF ∩S O = I là trọng tâm tam giác SBD ⇒ IA/IF=2

Đáp án B

3 tháng 1 2021

a) Do MN\(\subset\) (BMN); AD \(\subset\)(ABCD) nên I là một điểm chung của (BMN) với (ABCD). Dễ thấy B là một điểm chung khác I

Vậy (BMN)\(\cap\) (ABCD) =BI

b) J\(\in\)BI\(\subset\) (BMN)

\(\in\) (CD) \(\subset\) (SCD) 

nên J là một điểm chung của (BMN) \(\cap\) (SCD)

vậy (SCD) \(\cap\) (BMN) =NJ

Thiết diện của (BMN) với hình chóp là tứ giác AMNJ

c) Áp dụng định lí Menelaus Trong \(\Delta SAD\) có cát tuyến MNI có:

\(\dfrac{ID}{IA}.\dfrac{MA}{MS}.\dfrac{NS}{ND}=1\)

\(\dfrac{ID}{IA}.1.2=1\) => \(\dfrac{ID}{IA}=\dfrac{1}{2}\)

=> D là trung điểm AI

+ Xét tam giác SAI có 2 trung tuyến MI, SD giao nhau tại N => N là trong tâm tam giác SAI

=> \(\dfrac{NI}{MI}=\dfrac{2}{3}\)

Ta có AD//BC

=> \(\dfrac{IK}{BK}=\dfrac{AI}{BC}=\dfrac{2AD}{BC}=2\)(do AD=BC)

=> \(\dfrac{IK}{IB}=\dfrac{2}{3}\)

Xét tam giác MIB có: \(\dfrac{NI}{MI}=\dfrac{IK}{IB}=\dfrac{2}{3}\)

=> BM//NK

Chọn mp(SAC) có chứa AM

(SAC) giao (SBD)=SO

=>I=AM giao SO

3 tháng 10 2021

1.

Gọi \(O=AC\cap BD\)

\(AM\in\left(SAC\right)\)

Mà \(\left(SAC\right)\cap\left(SBD\right)=SO\)

\(\Rightarrow J=AM\cap SO\)

Qua M kẻ \(d//AB\Rightarrow N=d\cap SD\)

3 tháng 10 2021

2.

\(\left\{{}\begin{matrix}S,P,Q\in\left(SAD\right)\\S,P,Q\in\left(SBC\right)\end{matrix}\right.\Rightarrow S,P,Q\) thẳng hàng.

Gọi giao của AC và BD là O

\(\left\{{}\begin{matrix}O\in AC\subset\left(SAC\right)\\O\in BD\subset\left(SBD\right)\end{matrix}\right.\Leftrightarrow O\in\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}S\in\left(SAC\right)\\S\in\left(SBD\right)\end{matrix}\right.\Leftrightarrow S\in\left(SAC\right)\cap\left(SBD\right)\)

=>(SAC) giao (SBD)=SO

NV
12 tháng 12 2020

a.

 \(MN\) là đường trung bình của tam giác ABD \(\Rightarrow MN//BD\Rightarrow MN//\left(SBD\right)\)

b.

\(\dfrac{SI}{SM}=\dfrac{SJ}{SN}\Rightarrow IJ//MN\) (Talet đảo) 

Mà \(MN//\left(SBD\right)\Rightarrow IJ//\left(SBD\right)\)

c.

Gọi P là trung điểm IJ, Q là trung điểm MN \(\Rightarrow\) Q đồng thời là trung điểm AO

 \(\Rightarrow\dfrac{SP}{SQ}=\dfrac{SI}{SM}=\dfrac{2}{3}\Rightarrow P\) là trọng tâm SAO

Gọi K là trung điểm SA \(\Rightarrow OP\) đi qua K 

\(\Rightarrow K\in\left(IJO\right)\)

Mà K là trung điểm SA, O là trung điểm AC \(\Rightarrow KO\) là đường trung bình SAC

\(\Rightarrow SC//KO\Rightarrow SC//\left(IJO\right)\)

12 tháng 12 2020

thanks a