Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : \(BC\perp SA;BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow\left(SAB\right)\perp\left(SBC\right)\)
b.Dễ dàng c/m : \(AB\perp\left(SAD\right)\) \(\Rightarrow AB\perp SD\)
Lấy H là TĐ SD \(\Rightarrow MH\) // DC // AB
\(\Delta SAD\) vuông cân tại A ; H là TĐ SD \(\Rightarrow AH\perp SD\)
Suy ra : \(SD\perp\left(ABH\right)\Rightarrow SD\perp\left(ABM\right)\Rightarrow\left(SCD\right)\perp\left(ABM\right)\left(đpcm\right)\)
- Xác định góc \(\alpha\) giữa SC và mặt phẳng (SAB)
\(\left\{{}\begin{matrix}S\in\left(SAB\right)\\CB\perp\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow\left[\widehat{SC,\left(SAB\right)}\right]=\widehat{CSB}=\alpha\)
- Tính góc \(\alpha\) :
Trong tam giác vuông \(SBC\), ta có :
\(\tan\alpha=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)
\(\left\{{}\begin{matrix}BD\perp SA\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)
\(\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)
a/ \(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\\left(SAD\right)\perp\left(ABCD\right)\\\left(SAB\right)\cap\left(SAD\right)=SA\end{matrix}\right.\) \(\Rightarrow SA\perp\left(ABCD\right)\)
b/ \(SA\perp\left(ABCD\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABCD)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)
\(tan\widehat{SBA}=\frac{SA}{AB}=2\Rightarrow\widehat{SBA}\approx63^026'\)
c/ \(AB=BC\Rightarrow\Delta ABC\) cân tại B
\(\Rightarrow\) BO là trung tuyến đồng thời là đường cao
\(\Rightarrow BO\perp AC\)
Mà \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BO\)
\(\Rightarrow BO\perp\left(SAC\right)\Rightarrow\left(SBO\right)\perp\left(SAC\right)\)
d/ \(AC=AB\sqrt{2}=a\sqrt{2}\)
Gọi M là trung điểm AD \(\Rightarrow AM=\frac{AD}{2}=a\Rightarrow CM=MD=a\)
\(\Rightarrow CD=CM\sqrt{2}=a\sqrt{2}\)
\(\Rightarrow CD^2+AC^2=AD^2\Rightarrow AC\perp CD\)
\(\Rightarrow\widehat{SCA}\) là góc giữa (SCD) và (ABCD)
\(tan\widehat{SCA}=\frac{SA}{AC}=\sqrt{2}\Rightarrow\widehat{SCA}\approx54^044'\)
a: BC vuông góc SA
BC vuông góc AB
=>BC vuông góc (SAB)
=>(SAB) vuông góc (SBC)
b: BA vuông AD
BA vuông góc SA
=>BA vuông góc (SAD)
=>BA vuông góc SD
Lấy H là trung điểm của SD
=>HM//DC
=>HM vuông góc BC
ΔSAD vuông tại A nên AH vuông góc SD
=>SD vuông góc (BAH)
=>SD vuông góc (ABM)
=>(SCD) vuông góc (ABM)