Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)
=> Tam giác ABD cân tại A. Lại có góc A= 60o
=> Tam giác ABD đều.
Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.
* Gọi H là tâm của tam giác ABD
=>SH ⊥ (ABD)
*Gọi O là giao điểm của AC và BD.
a) Gọi O là tâm hình vuông ABCD , dễ thấy I, O, K thẳng hàng. Vì K là trung điểm của BC nên SK ⊥ BC.
Ta có
Do đó (SBC) ⊥ (SIK)
b) Hai đường thẳng AD và SB chéo nhau. Ta có mặt phẳng (SBC) chứa SB và song song với AD. Do đó khoảng cách giữa AD và SB bằng khoảng cách giữa AD và mặt phẳng (SBC).
Theo câu a) ta có (SIK) ⊥ (SBC) theo giao tuyến SK và khoảng cách cần tìm là IM, trong đó M là chân đường vuông góc hạ từ I tới SK. Dựa vào hệ thức IM. SK = SO. IK
ta có
Ta lại có:
Do đó:
Vậy khoảng cách giữa hai đường thẳng AD và SB là bằng
bị thừa nha bn tham khảo bn cần thì chép đến phần A thôi nha!
Do O là giao điểm 2 đường chéo \(\Rightarrow\) O là trung điểm AC và BD
Tam giác SAC cân tại S \(\Rightarrow SO\) là trung tuyến đồng thời là đường cao
\(\Rightarrow SO\perp AC\) (1)
Tương tự ta có \(SO\perp BD\) (2)
(1); (2) \(\Rightarrow SO\perp\left(ABCD\right)\)
b. Ta có \(AC\perp BD\) nên tam giác OBC vuông tại O
\(\Rightarrow OE=BE=\dfrac{1}{2}BC\) (trung tuyến ứng với cạnh huyền)
Mà \(\widehat{BCD}=\widehat{BAD}=60^0\Rightarrow\Delta BCD\) đều
\(\Rightarrow BD=BC\Rightarrow OB=BE=\dfrac{1}{2}BC\Rightarrow OB=OE=BE\)
\(\Rightarrow\Delta OBE\) đều \(\Rightarrow OF\perp BC\) (trung tuyến tam giác đều đồng thời là đường cao)
Mà \(SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)
\(\Rightarrow BC\perp\left(SOF\right)\Rightarrow\left(SBC\right)\perp\left(SOF\right)\)