Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)
Mà \(BD\perp AC\) (hai đường chéo hình thoi)
\(\Rightarrow BD\perp\left(SAC\right)\)
c/ Do \(SA\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu của SC lên (ABCD)
\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(\widehat{ABC}=60^0\Rightarrow\Delta ABC\) đều \(\Rightarrow AC=a\)
\(tan\widehat{SCA}=\frac{SA}{AC}=\frac{a\sqrt{3}}{a}=\sqrt{3}\)
\(\Rightarrow\widehat{SCA}=60^0\)
a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)
=> Tam giác ABD cân tại A. Lại có góc A= 60o
=> Tam giác ABD đều.
Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.
* Gọi H là tâm của tam giác ABD
=>SH ⊥ (ABD)
*Gọi O là giao điểm của AC và BD.
Gọi H là hình chiếu của S lên (ABCD)
Do \(SA=SB=SD\Rightarrow HA=HB=HD\)
\(\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác ABD
Mặt khác \(\widehat{A}=60^0\Rightarrow\Delta ABD\) đều \(\Rightarrow H\in AC\)
\(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\\SH\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABCD\right)\)
b/ Gọi M là trung điểm AB \(\Rightarrow MH\perp AB\) (do H là tâm tam giác đều)
\(\Rightarrow\widehat{SMH}\) là góc giữa (SAB) và (ABCD)
\(DM=\frac{AB\sqrt{3}}{2}\Rightarrow HM=\frac{1}{3}DM=\frac{AB\sqrt{3}}{6}=\frac{a\sqrt{3}}{6}\)
\(SM=\sqrt{SA^2-AM^2}=\frac{a\sqrt{2}}{2}\)
\(\Rightarrow cos\varphi=\frac{HM}{SM}=\frac{\sqrt{6}}{6}\)