K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi H là trung điểm của đoạn BC. Qua A vẽ AD song song với BC và bằng đoạn HC thì góc giữa BC và SA là góc ∠SAD. Theo định lí ba đường vuông góc, ta có SD ⊥ DA và khi đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy góc giữa BC và SA được xác định sao cho Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì BC // AD nên BC song song với mặt phẳng (SAD). Do đó khoảng cách giữa SA và BC chính là khoảng cách từ đường thẳng BC đến mặt phẳng (SAD).

Ta kẻ CK ⊥ SD, suy ra CK ⊥ (SAD), do đó CK chính là khoảng cách nói trên. Xét tam giác vuông SCD với đường cao CK xuất phát từ đỉnh góc vuông C ta có hệ thức:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 

Chú ý. Nếu kẻ KI // AD và kẻ IJ // CK thì IJ là đoạn vuông góc chung của SA và BC.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Chú ý :

Nếu kẻ KI // AD và kẻ IJ // CK thì IJ là đoạn vuông góc chung của SA và BC

6 tháng 7 2017

Đáp án D.

Kẻ Ax//BC, HI ⊥ Ax; HK ⊥ SI. 

Gọi M là trung điểm của AB

Ta có AI ⊥ (SHI)=> AI ⊥ HK=> HK ⊥ (SAI)=>d(H,(Sax)) = HK

Góc giữa SC và (ABC) là góc  S C H ^   =   60 0

Ta có:

16 tháng 3 2017

  Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Hình chiếu vuông góc của SI trên mặt phẳng (ABC) là AI nên góc giữa SI và mặt phẳng (ABC) là:

(vì tam giác SIA vuông tại A nên góc SIA nhọn) ⇒ Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Xét tam giác SIA vuông tại A, Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) nên:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Dựng hình bình hành ACBD, tam giác ABC đều nên tam giác ABD đều.

+) Ta có:

   AC // BD; BD ⊂ (SBD) nên AC // (SBD).

   mà SB ⊂ (SBD) nên d(AC, SB) = d(A, (SBD)).

- Gọi K là trung điểm đoạn BD, tam giác ABD đều suy ra AK ⊥ BD và Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) mà BD ⊥ SA nên BD ⊥ (SAK).

- Dựng AH ⊥ SK; H ∈ SK.

- Lại có AH ⊥ BD suy ra AH ⊥ (SBD).

- Vậy d(A, (SBD)) = AH.

- Xét tam giác SAK vuông tại vuông tại A, đường cao AH ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Vậy d(AC, SB) = d(A, (SBD)) 

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

NV
21 tháng 4 2021

\(SH\perp\left(ABC\right)\Rightarrow\widehat{SAH}\) là góc giữa SA và (ABC)

\(SH=\dfrac{a\sqrt{3}}{2}\) (đường trung tuyến trong tam giác đều SBC cạnh a)

\(AH=\dfrac{a\sqrt{3}}{2}\) (đường trung tuyến trong tam giác đều ABC cạnh a)

\(tan\widehat{SAH}=\dfrac{SH}{AH}=1\Rightarrow\widehat{SAH}=45^0\)

a: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SBD) vuông góc (SAC)

b: BC vuông góc AB

BC vuông góc SA
=>BC vuông góc (SAB)

=>BC vuông góc AK

mà AK vuông góc SB

nên AK vuông góc (SBC)