K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2021

ông này khuya rồi đăng bài nhiều d :(((

8 tháng 2 2021

vẫn hình vẽ ấy lập luận tương tự 

Gọi M là trung điểm của AB ta có:

AB _|_ SM ( tam giác SAB cân tại S ) (1)

AB _|_ CM ( tam giác ABC đều ) (2)

Từ (1),(2) suy ra AB vuông góc SCM 

suy ra góc (AB,SC)=90 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

16 tháng 3 2019

tại sao tam giác ABC và SBC lại vuông cân

a: SO vuông góc (ABC)

=>(SGO) vuông góc (ABC)

b: ((SAB);(ABC))=(SG;AG)=góc SGA

\(AG=\dfrac{a\sqrt{3}}{3}\)

cos SGA=AG/SA=căn 3/3:2=căn 3/6

=>góc SGA=73 độ

a: \(\widehat{SB;AB}=\widehat{SBA}\)

SA\(\perp\)(ABC)

=>\(SA\perp AB;SA\perp AC;SA\perp BC\)

Xét ΔSAB vuông tại A có \(tanSBA=\dfrac{SA}{AB}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

=>\(\widehat{SBA}=60^0\)

=>\(\widehat{SB;AB}=60^0\)

b:

\(\widehat{SC;AC}=\widehat{SCA}\)

Xét ΔSAC vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

nên \(\widehat{SCA}=60^0\)

=>\(\widehat{SC;AC}=60^0\)

c: ΔABC đều có AM là đường trung tuyến

nên \(AM=BC\cdot\dfrac{\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)

Ta có: SA\(\perp\)(ABC)

AM\(\subset\)(ABC)

Do đó: SA\(\perp\)AM

=>ΔSAM vuông tại A

\(\widehat{SM;AM}=\widehat{SMA}\)

Xét ΔSMA vuông tại A có \(tanSMA=\dfrac{SA}{AM}=\dfrac{a\sqrt{3}}{\dfrac{a\sqrt{3}}{2}}=2\)

=>\(\widehat{SMA}\simeq63^026'\)

=>\(\widehat{SM;AM}\simeq63^026'\)

NV
16 tháng 1 2024

a.

Góc giữa SB và AB là góc \(\widehat{SBA}\)

Trong tam giác vuông SAB:

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

\(\Rightarrow\widehat{SBA}=60^0\)

b.

Góc giữa SC và AC là góc \(\widehat{SCA}\)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

c.

Góc giữa SM và AM là góc \(\widehat{SMA}\)

AM là trung tuyến tam giác đều \(\Rightarrow AM=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow tan\widehat{SMA}=\dfrac{AM}{SA}=2\Rightarrow\widehat{SMA}=60^026'\)

15 tháng 2 2017

27 tháng 9 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta tính côsin của góc giữa hai vectơ  S C →  và  A B → . Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo giả thiết ta suy ra hình chóp có các tam giác đều là SAB, SAC và các tam giác vuông là ABC vuông tại A và SBC vuông tại S.

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy góc giữa hai vectơ  A B →   v à   S C →  bằng 120 o .

NV
14 tháng 3 2022

Dựng hình vuông ABDC

\(\Rightarrow SA=SB=SC=SD=2\) ; \(CD=AB=2\)

\(CD||AB\Rightarrow\widehat{\left(AB;SC\right)}=\widehat{\left(CD;SC\right)}=\widehat{SCD}\)

Tam giác SCD có \(SC=SD=CD\Rightarrow\Delta SCD\) đều

\(\Rightarrow\widehat{SCD}=60^0\)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông gócVectơ trong không gian, Quan hệ vuông góc

30 tháng 12 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi H là trung điểm của đoạn BC. Qua A vẽ AD song song với BC và bằng đoạn HC thì góc giữa BC và SA là góc ∠SAD. Theo định lí ba đường vuông góc, ta có SD ⊥ DA và khi đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy góc giữa BC và SA được xác định sao cho Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vì BC // AD nên BC song song với mặt phẳng (SAD). Do đó khoảng cách giữa SA và BC chính là khoảng cách từ đường thẳng BC đến mặt phẳng (SAD).

Ta kẻ CK ⊥ SD, suy ra CK ⊥ (SAD), do đó CK chính là khoảng cách nói trên. Xét tam giác vuông SCD với đường cao CK xuất phát từ đỉnh góc vuông C ta có hệ thức:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

 

Chú ý. Nếu kẻ KI // AD và kẻ IJ // CK thì IJ là đoạn vuông góc chung của SA và BC.

NV
2 tháng 4 2023

a.

Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp SB\)

b.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)