K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BH vuông góc AC
BH vuông góc SA

=>BH vuông góc (SAC)

=>BH vuông góc SC

SC vuông góc BK

SC vuông góc BH

=>SC vuông góc (BHK)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Giải bài 7 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 7 trang 105 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

(h.3.19)

= SA.SC.cos - SA.SB.cos = 0.

Vậy SA ⊥ BC. 
\(\overrightarrow{SB}.\overrightarrow{AC}=\overrightarrow{SB}\left(\overrightarrow{SC}-\overrightarrow{SA}\right)=\overrightarrow{SB}.\overrightarrow{SC}-\overrightarrow{SB}.\overrightarrow{SA}\)
\(=SB.SC.cos\widehat{BSC}-SB.SA.cos\widehat{BSA}=0\).
Vậy \(SB\perp AC\).
\(\overrightarrow{SC}.\overrightarrow{AB}=\overrightarrow{SC}.\left(\overrightarrow{SB}-\overrightarrow{SA}\right)=\overrightarrow{SC}.\overrightarrow{SB}-\overrightarrow{SC}.\overrightarrow{SA}\)
\(=SC.SB.cos\widehat{BSC}-SC.SA.cos\widehat{CSA}=0\).
Vậy \(SC\perp AB\).

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

- Xác định góc \(\alpha\) giữa SC và mặt phẳng (SAB)

\(\left\{{}\begin{matrix}S\in\left(SAB\right)\\CB\perp\left(SAB\right)\end{matrix}\right.\) \(\Rightarrow\left[\widehat{SC,\left(SAB\right)}\right]=\widehat{CSB}=\alpha\)

- Tính góc \(\alpha\) :

Trong tam giác vuông \(SBC\), ta có :

\(\tan\alpha=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{3}}\Rightarrow\alpha=30^0\)

31 tháng 3 2017

Giải bài 9 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 9 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Hình chóp tam giác đều S.ABC có đáy là tam giác đều ABC và chân đường cao trùng với tâm của đáy. H là tâm của tam giác đều ABC

● AH ⊥ BC

Mà AH là hình chiếu của SA trên (ABC)

⇒BC ⊥SA.

● Tương tự AC ⊥ BH.

BH là hình chiếu của SB trên (ABC)

⇒AC ⊥ SB.

NV
11 tháng 6 2020

S A B C H K

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

\(\Rightarrow BC\perp AH\) (1)

\(AH\perp SC\) (2)

(1);(2) \(\Rightarrow AH\perp\left(SBC\right)\)

\(\frac{SH}{SC}=\frac{SK}{SB}\Rightarrow HK//BC\) (định lý Talet đảo)

\(\Rightarrow HK\perp\left(SAC\right)\) (do \(BC\perp\left(SAC\right)\)

\(\Rightarrow HK\perp SA\)

\(HK\perp\left(SAC\right)\Rightarrow HK\perp SC\) (3)

(2);(3) \(\Rightarrow SC\perp\left(AHK\right)\Rightarrow SC\perp AK\)

\(AH\perp\left(SBC\right)\) (cmt) \(\Rightarrow\) BH là hình chiếu vuông góc của AB lên (SBC)

\(\Rightarrow\widehat{ABH}\) là góc giữa AB và (SBC)

\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AC^2}=\frac{1}{a^2}+\frac{1}{a^2}=\frac{2}{a^2}\Rightarrow AH=\frac{a\sqrt{2}}{2}\)

\(AB=\sqrt{AC^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow sin\widehat{ABH}=\frac{AH}{AB}=\frac{1}{2}\Rightarrow\widehat{ABH}=30^0\)