\(\widehat{ABC}\)= 30o, ΔSBC đều cạn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

Đáp án C

4 tháng 10 2019

Chọn A

Gọi M là trung điểm BC

Gọi K là hình chiếu của A trên SM , suy ra AK ⊥ SM.   (1)

6 tháng 1 2017

Đáp án A

Gọi I,H lần lượt là hình chiếu vuông góc của A trên BC, SI, khi đó: d(A, (SBC)) =AH

Tam giác ABC đều cạnh a nên AI =  a 3 2

Khi đó xét tam giác SAI :

NV
23 tháng 1 2021

Tam giác SBC cân hay đều em nhỉ?

Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)

23 tháng 1 2021

Đề cho là tam giác đều ạ

18 tháng 6 2017

Đáp án C

23 tháng 3 2018

Đáp án C

21 tháng 5 2022

Hình bạn tự vẽ nha mình biếng á chứ khog có j đou=)

Ta có : \(\left\{{}\begin{matrix}CA\perp AB\\\left(ABC\right)\perp\left(SAB\right)\\\left(ABC\right)\cap\left(SAB\right)=AB\end{matrix}\right.\) \(\Rightarrow CA\perp\left(SAB\right)\)

Kẻ \(AK\perp SB\) và \(AH\perp CK\) tại H.

Ta có : \(\left\{{}\begin{matrix}SB\perp AK\\SB\perp CA\end{matrix}\right.\) \(\Rightarrow SB\perp\left(ACK\right)\Rightarrow SB\perp AH\)

Do : \(\left\{{}\begin{matrix}AH\perp CK\\AH\perp SB\end{matrix}\right.\) \(\Rightarrow AH\perp\left(SBC\right)\Rightarrow d\left(A;\left(SBC\right)\right)=AH\)

Xét t/g ABK , ta có : AK = AB

=> \(sin\widehat{ABK}=\alpha sin60^o=\dfrac{a\sqrt{3}}{2}\)

Xét t/g ACK , ta có : \(\dfrac{1}{AH^2}=\dfrac{1}{AK^2}+\dfrac{1}{AC^2}=\dfrac{7}{3a^2}\Rightarrow AH=\dfrac{a\sqrt{21}}{7}\)

13 tháng 5 2019

Chọn C.

 

Gọi H là trung điểm của BC, suy ra .

Gọi K là trung điểm AC

14 tháng 11 2017