K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Trong mp(ABCD), gọi N là giao điểm của AD và BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

=>\(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

b: Gọi H là giao điểm của SG với CD

Xét ΔSCD có

G là trọng tâm

H là giao điểm của SG với DC

Do đó: H là trung điểm của DC

Chọn mp(SAH) có chứa MG

Trong mp(ABCD), gọi E là giao điểm của AH với BD

\(E\in AH\subset\left(SAH\right)\)

\(E\in BD\subset\left(SBD\right)\)

Do đó: \(E\in\left(SAH\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAH\right)\cap\left(SBD\right)\)

nên \(\left(SAH\right)\cap\left(SBD\right)=SE\)

Gọi K là giao điểm của MG với SE

=>K là giao điểm của MG với (SBD)

28 tháng 10 2023

a: \(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

b: Chọn mp(SAD) có chứa SA

Xét (SAD) và (CKB) có

\(K\in\left(SAD\right)\cap\left(CKB\right)\)

AD//CB

Do đó: (SAD) giao (CKB)=xy, xy đi qua K và xy//AD//CB

Gọi J là giao điểm của SA với xy

=>J là giao điểm của SA với mp(CKB)

c: \(C\in OA\subset\left(OIA\right);C\in\left(SCD\right)\)

=>\(C\in\left(OIA\right)\cap\left(SCD\right)\)

Xét ΔBSD có 

O,I lần lượt là trung điểm của BD,BS

=>OI là đường trung bình của ΔBSD

=>OI//SD

Xét (OIA) và (SCD) có

\(C\in\left(OIA\right)\cap\left(SCD\right)\)

OI//SD

Do đó: (OIA) giao (SCD)=mn, mn đi qua C và mn//OI//SD

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

c; AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

=>\(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: \(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

=>(SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: \(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: (HKCD) giao (ABCD)=CD

26 tháng 10 2023

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

b: Xét (SAD) và (SBC) có

AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

d: Trong mp(SAB), gọi I là giao điểm của AB với SM

\(I\in SM;I\in AB\subset\left(ABCD\right)\)

Do đó: I là giao điểm của SM với mp(ABCD)

29 tháng 8 2023

S A B C D M H K N O

a/

Ta có

\(S\in\left(SAD\right);S\in\left(SBC\right)\Rightarrow S\in d\) và d//AD//BC (Nếu 2 mp lần lượt chứa 2 đường thẳng // với nhau thì giao tuyến của chúng nếu có là đường thẳng // với 2 đường thẳng đã cho)

b/

Xét tg SAD có

MA=MD; HA=HS => MH là đường trung bình của tg SAD

=> MH//SD mà \(SD\in\left(SCD\right)\) => MH//(SCD) (1)

Xét tg SAB có

HA=HS; KS=KB => MH là đường trung bình của tg SAB

=> HK//AB mà AB//CD => HK//CD mà \(CD\in\left(SCD\right)\) => HK//(SCD) (2)

Từ (1) và (2) => (MHK)//(SCD) nên không có giao tuyến

c/

Gọi O là trung điểm BD, Nối MO cắt BC tại N

Xét tg ABD có

MA=MD; OB=OD => MO là đường trung bình của tg ABD

=> MO//AB; mà HK//AB (cmt) => MO//HK

=> M; O; H; K cùng thuộc mặt phẳng MKH 

\(\Rightarrow MO\in\left(MKH\right)\Rightarrow MN\in\left(MKH\right)\Rightarrow N\in\left(MKH\right)\)

Mà \(N\in BC\)

=> N là giao của BC với (MKH)

Ta có MO//HK => MN//HK => MHNK là hình thang