K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 11 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow\widehat{SMO}=60^0\)

\(\Rightarrow SO=OM.tan60^0=\dfrac{a\sqrt{3}}{2}\)

Trong mp (ABCD), kéo dài AM và CD cắt nhau tại E

Trong mp (SCD), nối NE cắt SC tại F

Theo định lý talet: \(\dfrac{EC}{ED}=\dfrac{MC}{AD}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}EC=a\\ED=2a\end{matrix}\right.\)

Áp dụng định lý Menelaus cho tam giác SCD:

\(\dfrac{FS}{FC}.\dfrac{CE}{ED}.\dfrac{DN}{NS}=1\Leftrightarrow\dfrac{FS}{FC}.\dfrac{1}{2}.1=1\Rightarrow\dfrac{FS}{FC}=2\)

\(\Rightarrow\dfrac{FC}{SC}=\dfrac{1}{3}\Rightarrow d\left(F;\left(ABCD\right)\right)=\dfrac{1}{3}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{3}SO=\dfrac{a\sqrt{3}}{6}\)

\(ND=\dfrac{1}{2}SD\Rightarrow d\left(N;\left(ABCD\right)\right)=\dfrac{1}{2}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{2}SO=\dfrac{a\sqrt{3}}{4}\)

\(\Rightarrow V_{NADMFC}=V_{NADE}-V_{FMCE}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{4}.\dfrac{1}{2}a.2a-\dfrac{1}{3}.\dfrac{a\sqrt{3}}{6}.\dfrac{1}{2}.a.\dfrac{a}{2}=\dfrac{5\sqrt{3}}{72}a^2\)

\(\Rightarrow V_1=V_{SABCD}-V_{NADMFC}=....\)

NV
22 tháng 11 2021

undefined

28 tháng 3 2018

12 tháng 11 2019

Chọn đáp án D

Gọi 

Khi đó góc giữa 2 mặt phẳng (SBD) và (ABCD) bằng 45o

Ta có: ∆BAD đều 

Thể tích khối chóp S.ABCD bằng: 

Ta có: N là trung điểm SC nên 

Thể tích khối chóp N.MCD bằng thể tích khối chóp N.ABCD bằng: 

Ta có K là trọng tâm tam giác SMC

2 tháng 5 2019

Đáp án A

6 tháng 5 2017

Chọn C

24 tháng 12 2018

Đáp án B

24 tháng 3 2018

Chọn D

Ta có:

Mặt khác 

Vậy

 

 

 

 

17 tháng 9 2017

Chọn C

P8OlO1j2AHe9.png

Gọi O là tâm của hình vuông ABCD.

Góc giữa cạnh bên (SAB) và mặt đáy là góc  S N O ^ = 60 o

Xét tam giác SNO, ta có SO = NO tan60=  a 3

Lại có M là trung điểm của SD nên:


 

N là trung điểm của CD nên S ∆ A C N = 1 4 S A B C D = 1 4 4 a 2 = a 2

Do đó, thể tích khối MACN là

29 tháng 3 2018

Đáp án là C 

Cách 1. Ta có mặt phẳng (P) đi qua trọng tâm của tam giác SAB cắt các cạnh của khối chóp lần lượt tại M, N, P, Q. Với MN//AB, NP//BC, PQ//CD, QM//AD.

Tương tự 

Nên 

Đặt AB = x.

Ta có 

Từ đó 

Cách 2. Do hai khối chóp S.MNPQ, S.ABCD đồng dạng với nhau theo tỉ số k = 2 3  nên tỉ lệ thể tích là