Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc ABD chung
=>ΔABD đồng dạng với ΔHBA
b: BD=căn 3^2+4^2=5cm
HB=AB^2/BD=3,2cm
c: AD là phân giác
=>ED/EB=AD/AB
mà AD/AB=AH/BH
nên ED/EB=AH/BH
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng với ΔABD
b: ΔABD vuông tại A có AH là đường cao
nên DA^2=DH*DB
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
DH=6^2/10=3,6cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó:ΔHBA\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)
c: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
Do đó; BD=60/7(cm); CD=80/7(cm)
a: Xét ΔABH vuông tại H và ΔACB vuông tại B có
góc BAH chung
Do đó: ΔABH đồng dạng với ΔACB
b: ΔABC vuông tại B
=>AC^2=AB^2+BC^2=100
=>AC=10cm
ΔBAC vuông tại B có BH là đường cao
nên AH*AC=AB^2 và BH*AC=BA*BC
=>AH*10=36 và BH*10=6*8=48
=>HA=3,6cm; BH=4,8cm
c: Xét ΔHBC có HE/HB=HK/HC
nên EK//BC
=>góc HEK=góc HBC=góc HAB
Xét ΔHEK vuông tại H và ΔHAB vuông tại H có
góc HEK=góc HAB
Do đó: ΔHEk đồng dạng với ΔHAB
=>HE/HA=EK/AB
=>HE*AB=EK*HA