Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMHQ vuông tại H và ΔPKN vuông tại K có
MQ=PN
\(\widehat{MQH}=\widehat{PNK}\)
Do đó: ΔMHQ=ΔPKN
Suy ra: MH=PK
a: Xét ΔKMI và ΔKNH có
\(\widehat{KMI}=\widehat{KNH}\)(hai góc so le trong, MI//HN)
KM=KN
\(\widehat{IKM}=\widehat{HKN}\)(hai góc đối đỉnh)
Do đó: ΔKMI=ΔKNH
=>KI=KH
=>K là trung điểm của HI
Xét tứ giác MINH có
K là trung điểm chung của MN và HI
nên MINH là hình bình hành
b: Ta có: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường
=>O là trung điểm chung của MP và NQ
Xét ΔNMP có
PK,NO là các đường trung tuyến
PK cắt NO tại H
Do đó: H là trọng tâm của ΔNMP
Xét ΔMNP có
PK là trung tuyến
H là trọng tâm
Do đó: \(PH=\dfrac{2}{3}PK\)
PH+HK=PK
=>\(HK+\dfrac{2}{3}PK=PK\)
=>\(HK=\dfrac{1}{3}PK\)
=>PH=2KH
mà KI=2KH(K là trung điểm của IH)
nên PH=HI
=>H là trung điểm của PI
c: Xét ΔMNP có
NO là đường trung tuyến
H là trọng tâm
Do đó: OH=1/3NO
=>OH=1/3QO
QO+OH=QH
=>\(\dfrac{1}{3}QO+QO=QH\)
=>\(QH=\dfrac{4}{3}QO\)
=>\(\dfrac{QO}{QH}=\dfrac{3}{4}\)
Xét ΔQHP có OF//HP
nên \(\dfrac{QO}{QH}=\dfrac{QF}{QP}\)
=>\(\dfrac{QF}{QP}=\dfrac{3}{4}\)
a: \(NP=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔMNP có MQ là phân giác
nên QN/MN=QP/MP
=>QN/3=QP/4=(QN+QP)/(3+4)=20/7
=>QN=60/7cm; QP=80/7cm
b: QE//MN
=>PQ/PN=EQ/MN
=>EQ/12=80/7:20=4/7
=>EQ=48/7cm
c: MH=12*16/20=9,6cm
\(MQ=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\left(cm\right)\)
\(HQ=\sqrt{MQ^2-MH^2}=\dfrac{48}{35}\left(cm\right)\)
M Q N P A K O
Hình hơi xấu nên thông cảm nhé.
Vì AQ là phân giác góc Q => AP/AM = QP/MQ
=> MO/AM=QP/2MQ
=> MO-AM/MA+1=QP/2MQ
=> AO/AM+1=QP/2MQ
MK là phân giác góc M => NK/QK=MN/MQ = QP/MQ
tương tự, KO/QK +1 = MN/2MQ =QP/2MQ
=> AO/AM=KO/QK => AK // MQ (định lý Ta lét đảo)
a: Xét ΔMBN vuông tại M và ΔKBP vuông tại K có
góc MBN=góc KBP
=>ΔMBN đồng dạg với ΔKBP
b:
MP=căn NP^2-MN^2=4cm
MB=BP=4/2=2cm
NB=căn 2^2+3^2=căn 13(cm)
ΔMBN đồng dạng với ΔKBP
=>MN/PK=BN/BP
=>3/PK=căn 13/2
=>PK=6/căn 13(cm)
a: Xét tứ giác MQAP có
MQ//AP
MP//AQ
Do đó: MQAP là hình bình hành
a: \(NQ=\sqrt{16^2+12^2}=20\left(cm\right)\)
NP/NQ=12/20=3/5
b: Xét ΔMHN vuông tại H và ΔNPQ vuông tại P co
góc MNH=góc NQP
=>ΔMHN đồg dạng với ΔNPQ
\(MH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
c: Xét ΔMQN vuông tại M có MH là đường cao
nên MQ^2=QH*QN