Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta cs : \(\hept{\begin{cases}MI//QK\\MI=QK\end{cases}}\)
=> Tứ giác MIKQ là hình bình hành
Ta lại cs : MI = MQ
=> Tứ giác MIKQ là hình thoi
M N Q P A I K
MN//PQ (cạnh đối hbh) => MI//KQ
Ta có
\(MI=\dfrac{MN}{2};KQ=\dfrac{PQ}{2}\) Mà MN=PQ (cạnh đối hbh) => MI=KQ
=> MIKQ là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Ta có
MA=MQ (gt) (1)
\(MN=2MQ\left(gt\right)\Rightarrow MQ=\dfrac{MN}{2}\) (2)
Ta có
\(MI=\dfrac{MN}{2}\) (3)
Từ (1) (2) (3) \(\Rightarrow MA=MI=\dfrac{MN}{2}\) => tg AMI cân tại M
Ta có
\(\widehat{AMI}=\widehat{AMP}-\widehat{M}=180^o-120^o=60^o\)
Xét tg AMI có
\(\widehat{MAI}+\widehat{MIA}+\widehat{AMI}=180^o\)
\(\Rightarrow\widehat{MAI}+\widehat{MIA}=180^o-\widehat{AMI}=180^o-60^o=120^o\)
Mà \(\widehat{MAI}=\widehat{MIA}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\dfrac{120^o}{2}=60^o\)
\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\widehat{AMI}=60^o\Rightarrow\Delta AMI\) là tg đều
c/
Xét hbh MNPQ có
MQ//NP => MA//NP
MA=MQ (gt); MQ=NP (cạnh đối hbh)
=> MA=NP
=> APMN là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
Ta có
\(MI=AI=\dfrac{MN}{2}\) (cạnh tg đều)
\(NI=\dfrac{MN}{2}\)
\(\Rightarrow AI=NI=\dfrac{MN}{2}\) => tg AIN cân tại I
Ta có \(\widehat{AIN}=\widehat{MIN}-\widehat{AIM}=180^o-60^o=120^o\)
Xét tg cân AIN có
\(\widehat{AIN}+\widehat{IAN}+\widehat{INA}=180^o\)
\(\Rightarrow\widehat{IAN}+\widehat{INA}=180^o-\widehat{AIN}=180^o-120^o=60^o\)
Mà \(\widehat{IAN}=\widehat{INA}\) (góc ở đáy tg cân)
\(\Rightarrow\widehat{IAN}=\widehat{INA}=\dfrac{60^o}{2}=30^o\)
Xét tg AMN có
\(\widehat{MAN}+\widehat{AMI}+\widehat{INA}=180^o\)
\(\Rightarrow\widehat{MAN}=180^o-\widehat{AMI}-\widehat{INA}=180^o-60^o-30^o=90^o\)
=> APMN là hình chữ nhật (hình bình hành có 1 góc vuông là HCN
a) Ta có: \(MI=IN=\dfrac{MN}{2}\)(I là trung điểm của MN)
\(QK=KP=\dfrac{QP}{2}\)(K là trung điểm của QP)
mà MN=QP(Hai cạnh đối trong hình bình hành MNPQ)
nên MI=IN=QK=KP
Ta có: \(MN=2\cdot MQ\)(gt)
mà \(MN=2\cdot MI\)(I là trung điểm của MN)
nên MQ=MI
Xét tứ giác MIKQ có
MI//QK(MN//QP,I\(\in\)MN, \(K\in QP\))
MI=QK(cmt)
Do đó: MIKQ là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành MIKQ có MI=MQ(cmt)
nên MIKQ là hình thoi(Dấu hiệu nhận biết hình thoi)
b) Ta có: \(\widehat{QMN}+\widehat{AMN}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{AMN}=180^0-\widehat{QMN}=180^0-120^0\)
hay \(\widehat{AMI}=60^0\)
Ta có: MI=MQ(cmt)
mà AM=MQ(M là trung điểm của AQ)
nên AM=MI
Xét ΔMAI có AM=MI(cmt)
nên ΔMAI cân tại M(Định nghĩa tam giác cân)
Xét ΔMAI cân tại M có \(\widehat{AMI}=60^0\)(cmt)
nên ΔMAI đều(Dấu hiệu nhận biết tam giác đều)
c) Ta có: AI=AM(ΔAMI đều)
mà \(AM=MQ\)(M là trung điểm của AQ)
nên AI=MQ
mà \(MQ=\dfrac{MN}{2}\)(gt)
nên \(AI=\dfrac{MN}{2}\)
Xét ΔAMN có
AI là đường trung tuyến ứng với cạnh MN(I là trung điểm của MN)
\(AI=\dfrac{MN}{2}\)(cmt)
Do đó: ΔAMN vuông tại A(Định lí 2 về áp dụng hình chữ nhật vào tam giác vuông)
hay \(\widehat{NAM}=90^0\)
Ta có: AM=MQ(M là trung điểm của AQ)
mà MQ=NP(Hai cạnh đối trong hình bình hành MNPQ)
nên AM=NP
Xét tứ giác AMPN có
AM//NP(MQ//NP, A\(\in\)MQ)
AM=NP(cmt)
Do đó: AMPN là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AMPN có \(\widehat{NAM}=90^0\)(cmt)
nên AMPN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a) Xét tam giác QMN có :
A là trung điểm của MN
B là trung điểm của MQ
=) AB là đường trung bình của tam giác QMN
=) AB // MQ Và AB=\(\frac{1}{2}\)MQ (*)
Xét tam giác QPN có :
C là trung điểm của QP
D là trung điểm của NP
=) CD là đường trung bình của tam giác QPN
=) CD // QN Và CD=\(\frac{1}{2}\)QN (**)
Từ (*) và (**) =) Tứ giác ABCD là hình bình hành (1)
Xét tam giác MQP có :
B là trung điểm của MQ
C là trung điểm của QP
=) BC là đường trung bình của tam giác MQP
=) BC // MP
Do MNPQ là hình thoi =) MP\(\perp\)NQ
Mà BC // MP và AB // NQ
=) BC\(\perp\)AB (2)
Từ (1) và (2) =) ABCD là hình chữ nhật
b) Ta có : MQ=QP
Do B là trung điểm của MQ =) MB=BQ=\(\frac{MQ}{2}\)
Do C là trung điểm của QP =) QC=CP=\(\frac{QP}{2}\)
=) QB=QC
Do MNPQ là hình thoi =) QM là đường phân giác \(\widehat{MQP}\)
=) \(\widehat{MQN}\)=\(\widehat{NQP}\)=\(\frac{\widehat{MQP}}{2}\)
Xét tam giác QMN có:
MQ=MQ và \(\widehat{QMN}\)=600
=) QMN là tam giác đều
Xét tam giác MQN có :
NQ là đường trung tuyến=) NQ là đường phân giác của \(\widehat{MNQ}\)
=) \(\widehat{MNB}\)=\(\widehat{BNQ}\)=\(\frac{\widehat{MNQ}}{2}\)=\(\frac{60^0}{2}\)= 300
Xét tam giác QBN và tam giác QCN có :
QB=QC ( chứng minh trên )
\(\widehat{BQN}\)=\(\widehat{CQN}\) ( chứng minh trên )
QN là cạch chung
=) tam giác QBN = tam giác QCN (c-g-c)
=)\(\widehat{BNQ}\)=\(\widehat{QNC}\) =300 (2 góc tương ứng ) và BN=CN ( 2 cạch tương ứng )
=) Tam giác BNC là tam giác cân tại N (3)
Ta có : \(\widehat{BNQ}\)+\(\widehat{QNC}\)=\(\widehat{BNC}\)
=) 300 +300 =\(\widehat{BNC}\)
=) \(\widehat{BNC}\)=600 (4)
Từ (3) và (4) =) Tam giác BNC là tam giác đều
a: Xét tứ giác MHKQ có
MH//QK
MH=QK
Do đó: MHKQ là hình bình hành
mà MH=MQ
nên MHKQ là hình thoi