K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

xin lỗi nhé mình ko biết

16 tháng 8 2017

A B C D E F G H I K N M Q P

a) - Xét tứ giác AMCI , có : 

+ AM // CI ( GT )

+ AM = CI ( GT )

=> AMCI là hình bình hành ( 2 cạnh đối song song và bằng nhau )

=> AI // MC  hay EH // FG (1)

- XÉt tứ giác BNDK có : 

+ BN // DK ( GT )

+ BN = DK ( GT : N , K lần lượt là trung điểm BC , DA và BC = DA )

=> BNDK là hình bình hành ( 2 cạnh đối song song và bằng nhau )

=> BK // DN hay EF // HG ( 2) 

- Từ 1 và 2 ta có : EFGH là hình bình hành ( các cặp cạnh đối song song )

- Kẻ FQ vuông góc AI tai Q

=> \(S_{EFGH\:}=FQ.EH\)

- Mặt khác : \(S_{AMCI}=FQ.AI\)( Vì MC // AI nên FQ là đường cao chung )

=>   \(\frac{S_{EFGH\:}}{S_{AMCI}}=\frac{FQ.EH}{FQ.AI}=\frac{EH}{AI}\)(3)

- LẠi có : 

+ Xét tam giác AHD có : KE // DH và K là trung điểm của AD nên => E là trung điểm của AH hay AE = EH 

+ Xét tam giác DCG có :  HI // CG , I là trung điểm của DC nên => H là trung diểm của DG => HI là đường trung bình của tam giác DCG  => \(HI=\frac{1}{2}.CG\)mà CG = FG = EH nên \(HI=\frac{1}{2}.EH\)

=>  \(AI=AE+EH+HI=2.EH+\frac{1}{2}.EH=\frac{5.EH}{2}\)

Thay vào 3 , ta được :

\(\frac{S_{EFGH\:}}{S_{AMCI}}=\frac{EH}{AI}=EH:\frac{5.EH}{2}=\frac{2.EH}{5.EH}=\frac{2}{5}\)

b) - Kẻ AP vuông góc với CD tại Q

- Ta có : \(S_{ABCD}=AP.CD\)và \(S_{AMCI}=AP.CI\)

=>  \(\frac{S_{AMCI}}{S_{ABCD}}=\frac{AP.CI}{AP.CD}=\frac{CI}{CD}=\frac{1}{2}\Rightarrow S_{AMCI}=\frac{1}{2}.S_{ABCD}\)

Từ ý a , ta có : \(S_{EFGH\:}=\frac{2}{5}.SAMCI=\frac{2}{5}.\frac{1}{2}.S_{ABCD}=\frac{1}{5}.S_{ABCD}\)

MÀ ABCD có diện tích là S nên \(S_{EFGH\:}=\frac{1}{5}.S\)

10 tháng 10 2021

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

 

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Suy ra: AF//CE

1:

Xet ΔOAE và ΔOCF có

góc OAE=góc OCF

góc AOE=góc COF

=>ΔOAE đồng dạng với ΔOCF
=>AE/CF=OE/OF

Xét ΔOEB và ΔOFD có

góc OEB=góc OFD

góc EOB=góc FOD

=>ΔOEB đồng dạng với ΔOFD

=>EB/FD=OE/OF=AE/CF

mà CF=DF

nên EB=AE

=>E là trung điểm của BA

22 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ∆ EOM và  ∆ FON có: ∠ (MEO) =  ∠ (NFO) (so le trong do DE//BF)

OE = OF (tính chất hình bình hành)

∠ (MOE)=  ∠ (NOF) (đối đỉnh )

Suy ra:  ∆ EOM =  ∆ FON (g.c.g) ⇒ OM = ON

Vậy tứ giác EMFN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).

17 tháng 10 2020

đầu bài chỗ " đường chéo BD cắt AE" chắc là " đường chéo BD cắt AI" phải không bn???

a) ta có: AB = CD ( ABCD là h.b.h)

=> AK = IC \(\left(=\frac{1}{2}AB=\frac{1}{2}CD\right)\)

mà AK // IC

=> AKCI là hình bình hành ( dấu hiệu)

xét \(\Delta DFC\)

có: DI =IC (gt)

EI // FC ( AKCI là h.b.h)

=> EI là đường trung bình của \(\Delta DFC\)

=> DE = EF ( t/c')

cmtt với \(\Delta AEB\)ta có: EF = FB

=> DE=EF=FB

b) xét \(\Delta ABD\)

có: AM=MD

AK=KB

=> KM là đường trung bình của \(\Delta ABD\)

=> KM // BD và \(KM=\frac{1}{2}BD\)

cmtt với \(\Delta BCD\)ta có: IN//BD và \(IN=\frac{1}{2}BD\)

=> KM // IN (//BD)

\(KM=IN\left(=\frac{1}{2}BD\right)\)

=> KMIN là hình bình hành ( dấu hiệu)