K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác APQD có 

AP//QD

AP=QD

Do đó: APQD là hình bình hành

mà AP=AD

nên APQD là hình thoi

b: Xét tứ giác PBQD có 

PB//QD

PB=QD

Do đó: PBQD là hình bình hành

Suy ra: PD//QB và PD=QB(1)

Xét tứ giác BPQC có 

BP//QC

BP=QC

Do đó: BPQC là hình bình hành

mà BP=BC

nên BPQC là hình thoi

=>PC và QB cắt nhau tại trung điểm của mỗi đường

hay K là trung điểm của BQ

=>KQ=BQ/2(2) 

Ta có: APQD là hình thoi

nên AQ và PD vuông góc với nhau tại trung điểm của mỗi đường

=>I là trung điểm của PD

=>IP=PD/2(3)

Từ (1), (2) và (3) suy ra IP//QK và IP=QK

hay IPKQ là hình bình hành

mà \(\widehat{PIQ}=90^0\)

nên IPKQ là hình chữ nhật

23 tháng 12 2016

Câu 1:

a)

\(BM=MC=\frac{1}{2}BC\) (M là trung điểm của BC)

\(AN=ND=\frac{1}{2}AD\) (N là trung điểm của AD)

\(BC=AD\) (ABCD là hình bình hành)

\(\Rightarrow AN=ND=BM=MC\) (1)

mà ND // BM

=> BMDN là hình bình hành

=> BN // MD (2)

=> MDKB là hình thang

b)

MC = AN (theo 1)

mà MC // AN (ABCD là hình bình hành)

=> AMCN là hình bình hành

=> AM // CN (3)

Từ (2) và (3)

=> MPNQ là hình bình hành (4)

BM = AN (theo 1)

mà BM // AN (ABCD là hình bình hành)

=> ABMN là hình bình hành

mà AB = BM \(\left(=\frac{1}{2}BC\right)\)

=> ABMN là hình thoi

=> AM _I_ BN

=> MPN = 900 (5)

Từ (4) và (5)

=> MPNQ là hình chữ nhật

c)

MPNQ là hình vuông

<=> MN là tia phân giác của PMQ

mà MN là đường trung tuyến của tam giác MDA vuông tại M (N là trung điểm của AD; MPNQ là hình chữ nhật)

=> Tam giác MDA vuông cân tại M có MN là đường trung tuyến

=> MN là đường cao của tam giác MDA

=> MNA = 900

mà MNA = ABM (ABMN là hình thoi)

=> ABM = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

Câu 2:

a)

\(AE=EB=\frac{AB}{2}\) (E là trung điểm của của AB)

\(CF=FD=\frac{CD}{2}\) (F là trung điểm của của CD)

mà AB = CD (ABCD là hình bình hành)

=> AE = EB = CF = FD (1)

mà AE // CF (ABCD là hình bình hành)

=> AECF là hình bình hành

b)

AE = FD (theo 1)

mà AE // FD (ABCD là hình bình hành)

=> AEFD là hình bình hành

mà DA = AE \(\left(=\frac{1}{2}AB\right)\)

=> AEFD là hình thoi

=> AF _I_ ED

=> EMF = 900 (2)

EB = FD (theo 1)

mà EB // FD (ABCD là hình bình hành)

=> EBFD là hình bình hành

=> EM // NF

mà EN // MF (AECF là hình bình hành)

=> EMFN là hình bình hành

mà EMF = 900 (theo 2)

=> EMFN là hình chữ nhật

c)

EMFN là hình vuông

<=> EF là tia phân giác của MEN

mà EF là đường trung tuyến của tam giác ECD vuông tại E (F là trung điểm của CD; EMFN là hình chữ nhật)

=> Tam giác ECD vuông cân tại E có EF là đường trung tuyến

=> EF là đường cao của tam giác ECD

=> EFD = 900

mà EFD = DAE (AEFD là hình thoi)

=> DAE = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

20 tháng 1 2018

a) Xét tứ giác AMCN có AM // NC ( ABCD là hbh)

AM = NC (gt)

\(\Rightarrow\) AMCN là hbh (dấu hiệu nhận biết)

Xét tứ giác AMND có AM // ND ( ABCD là hình bình hành)

AM = ND (gt)

\(\Rightarrow\) AMND là hbh ( dấu hiệu nhận biết)

c) CMTT : MBCN là hbh có CM cắt BN tại K

\(\Rightarrow\) MK = KC

Hbh AMND có I là giao của AN và DM

\(\Rightarrow\) IM = ID

Xét tam giác MCD có MK = KC (cmt)

IM = ID (cmt)

\(\Rightarrow\) IK là đường trung bình của tam giác MCD ( tính chất của đường trung bình trong tam giác)

\(\Rightarrow\) IK // CD (đpcm)

20 tháng 1 2018

Xin lỗi bài vừa làm sai rùi tớ sửa lại nha!leu