\(\perp\)AB. Nối E với trung điểm M c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017
 
 

 ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE) 
và MD//NC (AD//BC) 
=> MNCD là hình bình hành (1) 
MD=AD/2 
MN=AB=AD/2 
nên MD=MN (2) 
từ (1)(2) => MNCD là hình thoi. 
B) do MN//AB//CD(câu a) 
và M là trung điểm AD 
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC 
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC) 
=> tam giác MEC cân tại M 
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC 
=> MF là đường phân giác của tam giác MEC 
=> góc EMF=góc FMC 
góc AEM=góc EMF(AB//MN) 
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác) 
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD 
=> 2AEM=FMC+CMD 

6 tháng 10 2018

A B C D E M F N 1 2 3

a, Ta có: CE _|_ AB (gt)

              MN _|_ CE (gt)

=> MN // AB

Mà AB // CD (tính chất HBH)

=> MN // CD 

=> MNCD là HBH (1)

Lại có:  BC = 2AB

Mà AD = BC (t/c HBH), AB = CD (t/c HBH)

=> AD = 2CD 

=> \(CD=\frac{AD}{2}\)

Mà \(MD=\frac{AD}{2}\) (M là trung điểm của AD)

=> MD = CD (2)

Từ (1) và (2) => MNCD là hình thoi

b,  Vì MNCD là hình thoi => MD = CN 

                                            AD = BC (t/c hình HBH)

=>\(CN=\frac{BC}{2}\) hay CN = BN

Xét t/g BCE có: CN = BN (cmt), BE // NF (câu a)

=> EF = FC 

=> MF là đường trung tuyến của t.g CME

Mà MF cũng là đường cao của t/g CME

=> t/g CME cân tại M

c, Vì AB // MN (câu a) => góc BAD = góc NMD (đồng vị) (3)

Ta có: góc NMD = góc M1 + góc M2

Vì t/g CME cân tại M (câu b) => MF là tia p/g của góc CME => góc M2 = góc M3

MNCD là hình thoi (câu a) => góc M1 = M2

Do đó góc M1 = góc M2 = góc M3

=>góc NMD = \(2\widehat{M_3}\) (4)

Mà góc M3 = góc AEM (AE//MF;so le trong) (5)

Từ (3),(4),(5) => góc BAD = 2 góc AEM

P/s: hình k đc chuẩn

27 tháng 6 2017

A B C D E M F N

18 tháng 11 2019

ko bit

Ta có : MN\(\perp\)EC

AB\(\perp\)EC 

=> AB // MN 

Vì ABCD là hình bình hành 

=> AD = BC 

=> AB // CD

=> AB // CD // MN 

Xét tứ giác AECD có :

M là trung điểm AD 

MF // AE 

=> F là trung điểm EC 

Xét \(\Delta CEB\)có :

F là trung điểm EC

FN// EB 

=> N là trung điểm BC 

Ta có : AM = MD = \(\frac{AD}{2}\)

BN = NC = \(\frac{BC}{2}\)

=> MD = NC 

Xét tứ giác MNCD có :

MN // DC 

MD = NC 

=>MNCD là hình bình hành 

Vì F là trung điểm EC

=> EF = FC

Xét \(\Delta MEC\)có :

MF \(\perp\)EC

EF = FC

=> \(\Delta MEC\)cân tại M 

7 tháng 11 2016

a, Ta có : CE vuông góc với AB

Mà CE đi qua MN và vuông góc với MN

=> AB//MN

Mà : AB//DC

=>MN//DC

Xét tứ giác MNCD có :

MN//DC (cmt)

MD//NC

=> MNCD là hình bình hành (có các cạnh đối bằng nhau)

b,Xét tam giác EBC có :

BN=NC ( MN//DC và AM=MD => MN là đtb của tứ giác ABCD => BN=NC)

7 tháng 11 2016

Xin lỗi cho mình làm tiếp theo nha bạn .

Và : FN//EB   (MN//AB)

=> FN là đtb của tam giác EBC

=> EF=FC

* Ta lại xét tam giác MEF và tam giác MFC có :

MF cạnh chung

F=90

EF=FC (cmt)

=> tg MEF=tg MFC (cgc)

=> ME=MC

=> tam giác MEC là tam giác cân

c, mk không biết

nhớ k nhé