K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 1800 - AMD = 1800 - CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

=> AMCN là hình bình hành

=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

17 tháng 11 2016

Bạn ơi vẽ giùm mình hình bài này với ạ <3

21 tháng 10 2016

AE = EB = AB/2 (E là trung điểm của AB)

CF = FD = CD/2 (F là trung điểm của CD)

mà AB = CD (ABCD là hbh)

=> AE = CF

mà AE // CF (AB // CD, E thuộc AB, F thuộc CD)

=> AECF là hbh.

a: Xét tứ giác BMDN có

BM//DN

BM=DN

Do đó: BMDN là hình bình hành

b: AM+MB=AB

CN+ND=CD

mà MB=ND và AB=CD

nên AM=CN

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

c: AMCN là hình bình hành

=>AN//CM

=>NK//MH

BMDN là hình bình hành

=>BN//DM

=>NH//KM

Xét tứ giác MKNH có

MK//NH

MH//NK

Do đó: MKNH là hình bình hành

16 tháng 10 2023

ngu 

 

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: ABCDlà hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC

AMCN là hình bình hành

nên AC cắt MN tại trung điểm của mỗi đường

=>M đối xứng N qua O

11 tháng 8 2016

1.a) Ta có : góc MAN= GÓC MCN \(\Rightarrow\)NC // AM (1)
Lại có ABCD là hình bình hành \(\Rightarrow\) AB//=DC (2)
từ (1) và (2) \(\Rightarrow\) ANCM là hình bình hành( tứ giác có 2 cặp cạnh // với nhau)

11 tháng 8 2016

2)

Ảnh chụp màn hình_2012-09-01_142149.png

Sử dụng tính chất đường trung bình. Dễ dàng chứng minh QENF,MEPFQENF,MEPF là hình bình hành
Vậy EFEF và QNQN giao nhau tại trung điểm mỗi đường, EFEF và MPMP giao nhau tại trung điểm mỗi đường.
QN⇒QN giao MPMP tại trung điểm mỗi đường.
Vậy QPNMQPNM là hình bình hành. 

25 tháng 2 2020

giúp mik vs mik đang cần gấp