Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét ∆ OAE và ∆ OCF, ta có:
OA = OC (tính chất hình bình hành)
∠ (AOE)= ∠ (COF)(đối đỉnh)
∠ (OAE)= ∠ (OCF)(so le trong)
Do đó: ∆ OAE = ∆ OCF (g.c.g)
⇒ OE = OF (l)
* Xét ∆ OAG và ∆ OCH, ta có:
OA = OC (tính chất hình bình hành)
∠ (AOG) = ∠ (COH)(dối đỉnh)
∠ (OAG) = ∠ (OCH)(so le trong).
Do đó: ∆ OAG = ∆ OCH (g.c.g)
⇒ OG = OH (2)
Từ (1) và (2) suy ra tứ giác EGFH là hình bình hành (vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường).
giải: trong \(\Delta ADB\) có:
E là trung điểm của AB (gt)
H là trung điểm của AD (gt)
=> EH là đường trung bình của \(\Delta ADB\) (đ/n)
=> EH // BD và EH = \(\frac{1}{2}\) BD (định lý) (1)
trong \(\Delta CBD\) có:
F là trung điểm của BC (gt)
G là trung điểm của CD (gt)
=> FG là đường trung bình của \(\Delta CBD\) (đ/n)
=> FG // BD và FG = \(\frac{1}{2}BD\) (định lý) (2)
từ (1) và (2) => tứ giác EFGH là hình bình hành
ok mk nhé!!! 564756582352353645756756568768768797898898707803463464545756756
Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành
ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC
Xét tam giác AOE và tam giác COF ta có
góc AOE = góc COF (2 góc đối xừng)
AO=OC
góc DAC= góc ACB
=> tam giác AOE = tam giác COF=> OE=OF
CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH
Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O
lại có OE=OF
OH=OK
=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét ΔOAK và ΔOCH có
\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)
OA=OC
\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)
Do đó: ΔOAK=ΔOCH
=>OK=OH
=>O là trung điểm của KH
Xét ΔOAE và ΔOCF có
\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)
OA=OC
\(\widehat{AOE}=\widehat{COF}\)
Do đó: ΔOAE=ΔOCF
=>OE=OF
=>O là trung điểm của EF
Xét tứ giác EKFH có
O là trung điểm chung của EF và KH
=>EKFH là hình bình hành
xét tam giác AOE và tam giác COF có:
EAO= FCO(do ABCD là hình bình hành)
AO=OC
AOE=COF(đối đỉnh)
do đó tam giác AOE=tm giác COF(g.c.g)
suy ra OE=OF(1)
CMTT:OH=OG(2)
TỪ (1),(2)suy ra tứ giác EGFH là hình bình hành
Vì \(\Delta ODE=\Delta OBF\left(g.c.g\right)\)
nên \(OE=OF\)
Do O là trung điểm của EF nên E và F đối xứng với nhau qua O