Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác OBMC ta có
2 đường chéo BC và OM cắt nhau tại I
I là trung điểm BC (gt)
I là trung điểm OM ( M là điểm đối xứng của O qua I)
-> tứ giác OBMC là hbh
cmtt tứ giác ODNC là hbh
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN
ta có
BM // OC ( OBMC là hbh)
DN // OC (ODNC là hbh)
-.> BM//CN // OC
ta có
BM = OC ( OBMC là hbh)
DN = OC (ODNC là hbh)
-.> BM = ON
Xét tứ giác BMND ta có
BM // ON (cmt)
BM = ON (cmt)
-> tứ giác BMND là hbh
b) giả sử BMND là hcn
ta có
MB vuông góc BD ( BNMD là hcn)
BM // OC ( OBMC là hbh)
-> BD vuông góc OC tại O
Vậy AC vuông góc BD thì BMND là hcn
c) ta có
BD // CM ( OB // CM ; O thuộc BD)
BD // CN ( OD //CN . O thuộc BD)
-> CM trùng CN
-> C,N,M thẳng hàng
bài 1 . c) dễ dàng chứng minh tam giác DMA = tam giác DME (2 cạnh góc vuông) .Ta đc DA=DE , mà AD =BC nên BC = DC
Suy ra : tam giác AME = tam giác NBC ( cạnh huyền-cạnh góc vuông ) .( 1)
Tam giác MAN và tam giác EMC có : AN song song với MC nên góc EMC = góc MAN mà AN=MC(ANCM là hbh) , ME=MA nên 2 tam giác này bằng nhau (c.g.c) ;Suy ra góc M= góc e suy ra EC// MN (2)
Từ (1) và (2) suy ra là htc
caau1 d) dựa vào tính chất 2 đường chéo = nhau song chứng minh từ từ là ra bởi đã có góc E=C= 90 độ
a) Xét tam giác QMN có :
A là trung điểm của MN
B là trung điểm của MQ
=) AB là đường trung bình của tam giác QMN
=) AB // MQ Và AB=\(\frac{1}{2}\)MQ (*)
Xét tam giác QPN có :
C là trung điểm của QP
D là trung điểm của NP
=) CD là đường trung bình của tam giác QPN
=) CD // QN Và CD=\(\frac{1}{2}\)QN (**)
Từ (*) và (**) =) Tứ giác ABCD là hình bình hành (1)
Xét tam giác MQP có :
B là trung điểm của MQ
C là trung điểm của QP
=) BC là đường trung bình của tam giác MQP
=) BC // MP
Do MNPQ là hình thoi =) MP\(\perp\)NQ
Mà BC // MP và AB // NQ
=) BC\(\perp\)AB (2)
Từ (1) và (2) =) ABCD là hình chữ nhật
b) Ta có : MQ=QP
Do B là trung điểm của MQ =) MB=BQ=\(\frac{MQ}{2}\)
Do C là trung điểm của QP =) QC=CP=\(\frac{QP}{2}\)
=) QB=QC
Do MNPQ là hình thoi =) QM là đường phân giác \(\widehat{MQP}\)
=) \(\widehat{MQN}\)=\(\widehat{NQP}\)=\(\frac{\widehat{MQP}}{2}\)
Xét tam giác QMN có:
MQ=MQ và \(\widehat{QMN}\)=600
=) QMN là tam giác đều
Xét tam giác MQN có :
NQ là đường trung tuyến=) NQ là đường phân giác của \(\widehat{MNQ}\)
=) \(\widehat{MNB}\)=\(\widehat{BNQ}\)=\(\frac{\widehat{MNQ}}{2}\)=\(\frac{60^0}{2}\)= 300
Xét tam giác QBN và tam giác QCN có :
QB=QC ( chứng minh trên )
\(\widehat{BQN}\)=\(\widehat{CQN}\) ( chứng minh trên )
QN là cạch chung
=) tam giác QBN = tam giác QCN (c-g-c)
=)\(\widehat{BNQ}\)=\(\widehat{QNC}\) =300 (2 góc tương ứng ) và BN=CN ( 2 cạch tương ứng )
=) Tam giác BNC là tam giác cân tại N (3)
Ta có : \(\widehat{BNQ}\)+\(\widehat{QNC}\)=\(\widehat{BNC}\)
=) 300 +300 =\(\widehat{BNC}\)
=) \(\widehat{BNC}\)=600 (4)
Từ (3) và (4) =) Tam giác BNC là tam giác đều
nếu sau này bạn có hỏi hình thì bạn có gắng vẽ hình ra nhé