K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

 B1 a) Xét ∆AHD và ∆CKB có: + góc AHD = góc CKB = 90độ 
+ AD = BC 
+ góc ADH = góc CBK(so le trong) => ∆AHD = ∆CKB(c.g.c) => AH = CK 
Xét tứ giác AHCK có AH // CK(cùng ⊥ BD) và AH = CK => AHCK là hbh. 

b) Do AHCK là hình bình hành => AK // CH => AM // CN, do ABCD là hình bình hành => AD // BC => AN // BM. Xét tứ giác AMCN có AM // CH và AN // BM => AMCN là hình bình hành => AN = CM. 

c) Nối A -> C,M -> N do O là trung điểm HK => O là trung điểm AC => O là trung điểm MN => O;M;N thẳng hàng (do 2 đường chéo của hbh cắt nhau tại trung điểm mỗi đường) 

B2: 

B3: đề sai. 

B4: Kẻ EI // AB(I thuộc BC) Nối I -> F; I -> K; F -> C. => ta chứng minh được ADCI là hbh (bạn tự chứng minh) Dựa theo tính chất đối xứng ta chứng minh được: ∆FIC = ∆KIC, ∆FIC có FC = IC ( = DE) và góc C = 60độ => ∆FIC đều => ∆KIC đều => góc CIK = 60độ. Do ADCI là hbh => góc AIC = góc D = 120 độ => góc CIK + góc AIC = 60độ + 120 độ = 180độ => A;I;K thẳng hàng, mà AI // AB (cách kẻ) => AK // AB(đpcm)

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó; AMCN là hình bình hành

Suy ra: AN//CM và AN=CM

b: Ta có: AMCN là hình bình hành

nên Hai đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,BD,MN đồng quy

c: Xét tứ giác MENF có 

ME//NF

ME=NF

Do đó: MENF là hình bình hành

Suy ra: ME=NF và MN cắt EF tại trung điểm của EF

=>E,O,F thẳng hàng

15 tháng 11 2021

Chọn B

15 tháng 11 2021

Please! Help me

24 tháng 11 2023

a: Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b:ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

AMCN là hình bình hành

=>AC cắt MN  tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểm của MN

21 tháng 12 2024

Do ABCD là hình bình hành nên AD //BC hay AN//CM

Ta có: BE+AE=BA

DF+FC=DC

mà BA=DC

và AE=FC

nên BE=DF

Ta có: AN+ND=AD

CM+MB=CB

mà AD=CB

và AN=CM

nên ND=MB

Xét ΔANE và ΔCMF có 

AN=CM

\(\widehat{A}=\widehat{C}\)

AE=CF

Do đó: ΔANE=ΔCMF

Suy ra: NE=MF

Xét ΔEBM và ΔFDN có 

EB=FD

\(\widehat{B}=\widehat{D}\)

BM=DN

Do đó: ΔEBM=ΔFDN

Suy ra: EM=FN

Xét tứ giác MENF có 

ME=NF

NE=MF

Do đó: MENF là hình bình hành