K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Lời giải:
Vì $ABCD$ là hình bình hành nên $AO=OC$

Xét tam giác $AHO$ và $CKO$ có:

$\widehat{AHO}=\widehat{CKO}=90^0$

$\widehat{AOH}=\widehat{COK}$ (đối đỉnh)

$AO=CO$

$\Rightarrow \triangle AHO=\triangle CKO$ (ch-gn)

$\Rightarrow AH=CK$

Tứ giác $AHCK$ có 2 cạnh đối $AH, CK$ song song (do cùng vg với $BD$) và bằng nhau nên $AHCK$ là hbh.

AH
Akai Haruma
Giáo viên
26 tháng 8 2023

Hình vẽ:

a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

góc ADH=góc CBK

=>ΔAHD=ΔCKB

=>AH=CK

mà AH//CK

nên AHCK là hình bình hành

b: AHCK là hbh

=>AC cắt HK tại trung điểm của mỗi đường

=>A,O,C thẳng hàng

24 tháng 9 2021

đề là tam giác EOF hoặc DEF (tại vì mik viết nó giống nhau)

b) cho góc a=120 độ, tính EOF nữa

NM
9 tháng 9 2021

undefined

ta có : hai tam giác ABD bằng CND ( do ABCD là hình bình hành nên )

\(S_{ABD}=S_{CBD}\Leftrightarrow\frac{1}{2}AH.BD=\frac{1}{2}CK.BD\Rightarrow AH=CK\)

mà AH song song với CK  (do cùng vuông góc với BD) 

nên AHCK là hình bình hành

9 tháng 9 2021

  •  

Giải thích các bước giải:

Ta có tứ giác ABCD là hình bình hành 

=>AD// và =BC

AD//BC,cát tuyến BD

=>∠ADH=∠KBC(so le trong)

XétΔAHD và ΔBKC

·∠AHD=∠BKC=90 độ

·∠ADH=∠KBC

.AD=BC

=>ΔAHD = ΔBKC(ch+gn)

b)=>AH=CK(2 cạnh tương ứng của 2Δ=nhau) (1)

ta có AH⊥BD

CK⊥BC

=>AH//CK (2)

Từ (1) và (2) =>đpcm (theo tc đoạn chắn)

~ Chúc bn Thành Công trong HT ạ ~