K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

a) Xét hai tam giác vuông ADH và BCK có:

AD = BC (tính chất hình bình hành)

B1ˆ=D2ˆB1^=D2^ (slt, AB // CD)

Vậy: ΔADH=ΔBCK(ch−gn)ΔADH=ΔBCK(ch−gn)

⇒⇒ AH = CK (1)

Chứng minh tương tự ta được: ΔABK=ΔCDH(ch−gn)ΔABK=ΔCDH(ch−gn)

⇒⇒ AK = CH (2)

Từ (1) và (2) suy ra: AHCK là hình bình hành

b) O là giao điểm của AC và BD thì O là trung điểm của AC (tính chất đường chéo hình bình hành)

AHCK là hình bình hành (cmt) ⇒⇒ HK đi qua trung điểm O của đường chéo AC

Vậy H, O, K thẳng hàng.

A B D C O H K

P.s:Mìh vẽ hình hơi xấu ;))

Bài 1:

a: OE+EA=OA

OF+FC=OC

mà EA=FC; OA=OC

nên OE=OF

=>O là trung điểm của EF

Xét tứ giác BEDF có

O là trung điểm chung của BD và EF

=>BEDF là hình bình hành

b: Xét ΔBEC co FM//EB

nên FM/EB=CF/CE=1/2

=>DF=2FM

c: Xét tứ giác BJDI có

BJ//DI

BI//DJ

=>BJDI là hình bình hành

=>BD cắt IJ tại trung điểm của mỗi đường

=>O là trung điểm của JI

11 tháng 8 2017

bn kiểm tra lại đề đi!!

8 tháng 11 2019

Mik chỉ vẽ đc hình thui

Còn bài thì mik chưa nghĩ ra

Thông cảm nha

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB(Hai cạnh đối của hình bình hành ABCD)

\(\widehat{D}=\widehat{B}\)(Hai góc đối của hình bình hành ABCD)

Do đó: ΔAED=ΔCFB(cạnh huyền-góc nhọn)

Suy ra: AE=CF(Hai cạnh tương ứng) và ED=FB(hai cạnh tương ứng)

Ta có: ED+EC=DC(E nằm giữa D và C)

FB+FA=AB(F nằm giữa A và B)

mà AB=DC(Hai cạnh đối của hình bình hành ABCD)

và ED=FB(cmt)

nên EC=FA

Xét tứ giác ECFA có 

EC=FA(cmt)

EA=CF(cmt)

Do đó: ECFA là hình bình hành(Dấu hiệu nhận biết hình bình hành)

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAM và ΔOCP có

góc OAM=góc OCP

OA=OC

góc AOM=góc COP

=>ΔOAM=ΔOCP

=>OM=OP

=>O là trung điểm của MP

Xét ΔOQD và ΔONB có

góc ODQ=góc OBN

OD=OB

góc QOD=góc NOB

=>ΔOQD=ΔONB

=>OQ=ON

=>O là trung điểm của QN

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

=>MNPQ là hbh