Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có tam giác ABD=BCD (c.c.c) suy ra CK=AH a b c d h k
xét tứ giác AKCH có ck=ah cmt hkc=ahk=90 độ ( so le trong ) -> ah//kc -> AKCH là hình bình hành (dhnb)-> CH=AK
xét tam giác ADK và BCH có BC=AD CH=AK cmt có góc ADH= góc CBK so le trong -> ADK=BCH (c.g.c)
xét tam giác ABH VÀ CKH = nhau (c.g.c) ( chứng minh tượng tự ) -
Ta có đa giác ABCH = AHB+CHD và ADCK=AKD+CKD MÀ AHB=Ckd cmt . ADK = BCH cmt -> tứ giác ABCH=ADCK-> diện tích=nhau
Ta có:
△ ABC = △ ADC (c.c.c) ⇒ S A B C = S A D C (1)
△ AHC = △ AKC (c.c.c) ⇒ S A H C = S A K C (2)
Từ (l) và (2) ⇒ S A B C + S A H C = S A D C + S A K C
Hay S A B C H = S A D C K
có tam giác ABD=BCD (c.c.c) suy ra CK=AH
xét tứ giác AKCH có ck=ah cmt hkc=ahk=90 độ ( so le trong )
-> ah//kc -> AKCH là hình bình hành (dhnb)
-> CH=AK xét tam giác ADK và BCH có BC=AD CH=AK cmt có góc ADH= góc CBK so le trong
-> ADK=BCH (c.g.c) xét tam giác ABH VÀ CKH = nhau (c.g.c)-> diện tích=nhau
( chứng minh tượng tự ) - Ta có đa giác ABCH = AHB+CHD
và ADCK=AKD+CKD MÀ AHB=Ckd cmt . ADK = BCH cmt
-> tứ giác ABCH=ADCK
A D B C H K 1 2 2 1
Xét 2 tam giác vuông HDA và KBC có :
AD = BC ( ABCD - hbh )
\(\widehat{D1}=\widehat{B1}\)( so le trong , AD // Bc )
\(\Rightarrow\)\(\Delta HDA=\Delta KBC\)( ch-gn )
\(\Rightarrow\)Diện tích tam giác HDA = diện tích tam giác KBC ( 1 )
Xét t/g HDC và t/g KBA :
CD = AB ( gt )
\(\widehat{D2}=\widehat{B2}\)( so le trong , CD // AB )
HD = KB ( t/g HDA = t/g KBC )
\(\Rightarrow\)\(\Delta HDC=\Delta KBA\)( c-g-c )
\(\Rightarrow\)Diện tích tam giác HDC = diện tích tam giác KBA ( 2 )
Diện tích ABCH = diện tích KBA + diện tích AK Ch + diện tích KBC ( 3 )
Diện tích ADCK = diện tích HDC + diện tích AKCH + diện tích HDA ( 4 )
Từ ( 1 ) ; ( 2 ) ; ( 3 ) : ( 4 ) suy ra diện tích đa giác ABCH = diện tích ADCK ( đpcm )
Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.
Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:
- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.
- Vẽ đường thẳng EF.
- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD, BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho
Hướng dẫn giải:
Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.
Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:
- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.
- Vẽ đường thẳng EF.
- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD, BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho
Xem hình 125 ta thấy:
SABC = SADC
SAFE = SAHE
SEKC = SEGC
Suy ra: SABC – SAFE – SEKC = SADC – SAHE - SEGC
hay SEFBK = SEGDH
Xét tam giác ABC ta có:
ON // AB (gt)
=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)
Xét tam giác ABD ta có:
OM // AB (gt)
=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)
Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)
Vậy OM = ON.