K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) N trung điểm AD \(\Rightarrow AN=\frac{AD}{2}=\frac{BC}{2}\)

M trung điểm BC \(\Rightarrow MC=\frac{BC}{2}\Rightarrow AN=MC\)mà AN//MC

nên AMCN là hình bình hành \(\Rightarrow\overrightarrow{AM}=\overrightarrow{NC}\)

b) Tương tự câu a ta được \(\hept{\begin{cases}ND=BM=\frac{1}{2}BC\\ND//BM\end{cases}}\)=> NDMB là hình bình hành=> NB//DM (1)

Xét 2 tam giác ANI và NDK: \(\hept{\begin{cases}AN=ND=\frac{AD}{2}\\\widehat{NAI}=\widehat{DNK}\left(AM//NC\right)\\\widehat{ANI}=\widehat{NDK}\left(NB//MD\right)\end{cases}\Rightarrow\Delta ANI=\Delta NDK\left(g.c.g\right)}\)

\(\Rightarrow NI=DK\)(2)

(1), (2) => \(\overrightarrow{NI}=\overrightarrow{DK}\)

14 tháng 9 2021

\hept là j???

10 tháng 9 2020

\(\hept{\begin{cases}AM=NC\\AM||NC\end{cases}\Rightarrow NA||BC}\)

\(\Delta ABK\)có \(\hept{\begin{cases}MI||AK\\MA=MB\end{cases}\Rightarrow IB=IK}\)

\(\Delta CDI\)có \(\hept{\begin{cases}NK||IC\\ND=NC\end{cases}\Rightarrow KD=KI}\)

\(\Rightarrow DK=KI=IB\)

31 tháng 8 2019

a) Ta có: \(\overrightarrow{NC}+\overrightarrow{MC}=\overrightarrow{NC}+\overrightarrow{CE}=\overrightarrow{NE}\)

Ta có: \(\overrightarrow{AM}+\overrightarrow{MN}=\overrightarrow{AN}\)

Ta có: \(\overrightarrow{A\text{D}}+\overrightarrow{DE}=\overrightarrow{A\text{E}}\)

b) Ta có:

\(\left\{{}\begin{matrix}\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AC}\\\overrightarrow{AB}+\overrightarrow{A\text{D}}=\overrightarrow{AC}\end{matrix}\right.\)

\(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{A\text{D}}\)

13 tháng 10 2019

E ở đâu vậy bạn, đề k cho, bạn vẽ hình ra giúp mình nhed

31 tháng 12 2023

Xét ΔBAD có BI là đường trung tuyến

nên \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

=>\(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{3}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AM}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)

=>\(\overrightarrow{BI}=\dfrac{5}{6}\cdot\overrightarrow{BM}\)

=>B,I,M thẳng hàng

25 tháng 12 2023

Cách 1: Dùng định lý Menelaus đảo:

Từ đề bài, ta có \(\dfrac{BD}{BC}=\dfrac{2}{3}\)\(\dfrac{MC}{MA}=\dfrac{3}{2}\)\(\dfrac{IA}{ID}=1\)

\(\Rightarrow\dfrac{BD}{BC}.\dfrac{MC}{MA}.\dfrac{IA}{ID}=1\)

Theo định lý Menelaus đảo, suy ra B, I, M thẳng hàng.

Cách 2: Dùng vector

 Ta có \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}.\dfrac{2}{3}\overrightarrow{BC}\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) 

\(=\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

Lại có \(\overrightarrow{BM}=\dfrac{MC}{AC}\overrightarrow{BA}+\dfrac{MA}{AC}\overrightarrow{BC}\)

\(=\dfrac{3}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

\(=\dfrac{1}{5}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}.\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}\overrightarrow{BI}\)

Vậy \(\overrightarrow{BM}=\dfrac{6}{5}\overrightarrow{BI}\), suy ra B, I, M thẳng hàng. 

 

AH
Akai Haruma
Giáo viên
14 tháng 10 2021

Điểm I là điểm nào thế bạn?