Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình bình hành => AB//CD mà AM thuộc AB; CN thuộc CD => AM//CN
Mà AM=CN
=> AMCN là hình bình hành (tứ giác có cặp cạnh đối // và = nhau là hình bình hành)
=> AC và MN là đường chéo của hbh AMCN
Gọi O là giao của AC và MN => O là trung điểm của AC và MN (Trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
A cố định C cố định => O cố định => MN luôn đi qua O cố định
A B C D O M N P Q
a/
Ta có
MN//AB (gt)
AD//BC=> AM//BN
=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có
AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)
b/
Xét hbh ABCD
OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Xét hbh APCQ có
IA=IC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng
c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O
5. Vì tứ giác ABCD là hình bình hành (gt)
=> AD // BC ; AD = BC (tc)
Vì M là trung điểm AD (gt)
N là trung điểm BC (gt)
AD = BC (cmt)
=> AM = DM = BN = CN
Vì AD // BC mà M ∈ AD, N ∈ BC
=> MD // BN
Xét tứ giác MBND có : MD = BN (cmt)
MD // BN (cmt)
=> Tứ giác MBND là hình bình hành (DHNB)
=> BM = DN (tc hình bình hành)
6. Vì tứ giác ABCD là hình bình hành (gt)
=> AB // CD ; AB = CD (tc)
Vì E là trung điểm AB (gt)
F là trung điểm CD (gt)
AB = CD (cmt)
=> AE = BE = DF = DF
Vì AB // CD mà E ∈ AB, F ∈ CD
=> BE // DF
Xét tứ giác DEBF có : BE = DF (cmt)
BE // DF (cmt)
=> Tứ giác DEBF là hình bình hành (DHNB)
Kẻ IN, DM song song với BC
suy ra IN song song vs DM
Tam giác EDM có Itrung điểm DE và IN song song vs DM
suy ra In là đương trung binh của tam giác EDM
suy ra N là trung điểm Em
ta có DM song song với BC suy ra DMCB là hình thang
Mà góc ABC =ACB
nên DMCB là hình thang cân
suy ra DB =MC
ta lại có DB=AE
suy ra MC =AE
suy ra AE+EN=CM+MN
vậy AN=NC
VẬY N là trung điểm AC
Tam giác ACK có N là trung điểm AC và IN song song với BC
suy ra IN là đường trung bình tam giác AKB
suy ra I la trung điểm AK
tứ giác ADKE có I là trung điểm DE và I trung điểm AK
nêm ADKE là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường
Câu hỏi của Hồ Văn Đạt - Toán lớp 8 - Học toán với OnlineMath
De dang chung minh duoc \(\Delta MAX=\Delta MDP,\Delta NBY=\Delta NCP\)
suy ra M la trung diem XP, N la trung diem PY
xet tam giac XPY co YM,XN la duong trung tuyen => T la trong tam tam giac XPY
=> PT di qua trung diem XY (1)
Mat khac MN // XY ( duong trung binh) (2)
va M , N la trung diem AD,BC co dinh (3)
tu (1),(2),(3) suy ra PT di qua trung diem MN co dinh
Chuc ban hoc tot
Upin : t nghĩ phần cuối của m từ ( 1 ), ( 2 ) và ( 3 ) => ... như thế không thuyết phục lắm
t nghĩ là m nên nói bổ đề hình thang
còn không thì gọi giao điểm PT với MN và XY là K và H
xong dùng Ta-lét để chứng minh MK = KN