K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Tham Khảo Nha :

Xét hbh ABCD có :

AB = CD; AB // CD

Mà e là trg điểm của AB, E là trg điểm của CD

=> AF//EC, AF=EC

=> Tứ giác AFEC là hbh

b/ Xét tam giác DHC có:

IE//HC( hbh AFEC)

E là trg điểm của DC

=> I là trg điểm của DH (1)

chứng minh tương tự tam giác AIB

=> H là trg điểm của IB (2)

Từ (1) và (2) => đpcm

c/Xét tam giác DHC có:

I là ttrg điểm của DH

E là trg điểm của DC

=> IE là đg trbình của tg DHC

=> IE= 1/2 HC (3)

Xeý tg IEB có:

H là trg điểm của IB

HJ // IE (AE// FC; J thuộc FC)

=> J là trung điểm của BE

=> HJ là đg trbình của tg BIE

=> HJ = 1/2 IE (4)

Từ (3) và (4) => HJ = 1/4 HC hay 4HJ = HC

19 tháng 10 2018

A B C D F I H E J

a, Xét tứ giác AECF có:

AF = CE ( AB = CD )

AF // CE ( AB // CD )

=> AECF là hình bình hành ( đpcm )

b, Xét \(\Delta ABI\) có:

F là trung điểm AB (gt)

AI // FH ( AE // CF )

=> FH là đg trung bình của \(\Delta ABI\)

=> HI = HB (1)

C/m tương tự ta có: EI là đg trung bình \(\Delta CDH\)

=> HI = HD (2)

Từ (1) và (2) => DI = IH = HB ( đpcm )

Bn tham khảo nhé, câu c mk chưa nghĩ ra, thấy bn đg gấp mà

Hok tốt

28 tháng 10 2022

b: Xét tứ giác AFEC có AF//EC và AF=EC

nên AFEC là hình bình hành

Xét ΔDHC có

E là trung điểm của DC

EI//HC

Do đó: I là trung điểm của DH

Xét ΔBAI có

F là trung điểm của BA

FH//AI

Do đó: H la trung điểm của BI

=>DI=IH=HB

c: Vì BFEC là hình bình hành

nên BE cắt FC tại trung điểm của mỗi đường

=>H là trung điểm chung của BE và CF

Xét ΔBIE có BJ/BI=BH/BE

nên JH/IE=1/2

=>JH=1/2IE

Xét ΔDHC có DE/DC=DI/DH

nên EI//HC và EI=1/2HC

=>JH=1/4HC

=>HC=4JH

2 tháng 10 2018

a) Vì ABCD là hình bình hành
=> AB//CD hay AE//CF (1)
+) AB = CD ( vì là 2 cạnh đối)
=> 1/2 AB= 1/2 CD
=> AE = CF (2)
Từ (1) và (2)
=> 2 cạnh đối AE và CF song song và bằng nhau
=> tứ giác AECF là hình bình hành

Mk mới làm đc phần a thôi h mk bận r có j ib mk giải cho nha !!!

Xin lỗi bạn nhiều !!

11 tháng 10 2018

Giả thiết, kết luận đâu bạn ?

4 tháng 12 2015

a,Vi ABCD la hbh(gt)

=>AB=CD;AB//CD

Ma M€AB;N€CD

=>MB//ND

Vi M la trung diem cua AB

=>MA=MB=AB/2

Vi N la trung diem cua CD

=>CN=ND=CD/2

Ma AB=CD(cmt)

=>MB=DN

Tg DMBN co:

MB//DN(cmt)

MB=ND(cmt)

=>Tg DMBN la hbh(dh)

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

9 tháng 8 2018

A E F N B C M D

do ABCD là hình bình hành

=>AD//BC

=>\(\widehat{DAC}=\widehat{BCA}\)(so le)

Xét \(\Delta ADE\)\(\Delta CBF\) có:

AD=BC( do ABCD là hình bình hành)

\(\widehat{DAC}=\widehat{BCA}\)(cmt)

AE=CF(gt)

=>\(\Delta ADE\)=\(\Delta CBF\)(c.g.c)

=>\(\widehat{AED}=\widehat{CFB}\)

Ta có:

\(\widehat{AED}=\widehat{NEC}(đối dỉnh) \)

\(\widehat{BFC}=\widehat{AFM}(đối đỉnh)\)

=>\(\widehat{NEC}=\widehat{AFM}\)

Mà hai góc này ở vị trí so le trong

=>DN//MB

=>EN//BF(1)

Lại có:

AE=EF(2)

=>AN=NB=> N là trung điểm của AB

MB//DN=>MF//DE(3)

Lại có: CF=EF(4)

Từ (3),(4)

=>CM=MD

=> M là trung điểm của CD

25 tháng 11 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

+) Ta có:

AE = 1/2 AB; CF = 1/2. CD ( vì E và F lần lượt là trung điểm của AB, CD).

Và AB = CD (tính chất hình bình hành)

Suy ra: AE = CF

+) Lại có: AB // CD ( vì ABCD là hình bình hành) nên AE //CF

Tứ giác AECF có hai cạnh đối AE, CF song song và bằng nhau nên là hình bình hành

⇒ AF //CE hay EN // FM (1)

Xét tứ giác BFDE ta có:

AB // CD (gt) hay BE // DF

BE = 1/2 AB (gt)

DF = 1/2 CD (gt)

AB = CD (tính chất hình bình hành)

Suy ra: BE = DF

Tứ giác BFDE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ BF//DE hay EM // FN (2)

Từ (1) và (2) suy ra tứ giác EMFN là hình bình hành (theo định nghĩa hình bình hành)