K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

a: Xét ΔADE vuông tại E và ΔCBF vuông tại F có 

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔADE=ΔCBF

Suy ra: AE=CF

b: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

21 tháng 11 2021

Đáp án: Giải thích các bước giải a) Hình bình hành ABCD gọi OO là giao điểm của AC và BD ⇒O⇒O là trung điểm của AC, BD (tính chất ) Xét hai tam giác vuông ΔOEBΔOEB và OFDOFD có: OB=ODOB=OD ˆBOE=ˆDOFBOE^=DOF^ (đối đỉnh) ⇒ΔOEB=ΔOFD⇒ΔOEB=ΔOFD (cạnh huyền-góc nhọn) ⇒BE=DF⇒BE=DF (hai cạnh tương ứng) Và có BE//DFBE//DF (vì cùng vuông góc với AC giả thiết) Từ hai điều trên ⇒⇒ tứ giác BEDF là hình bình hành (dấu hiệu nhận biết) b) Xét ΔHBCΔHBC và ΔKDCΔKDC có: ˆBHC=ˆDKC=90oBHC^=DKC^=90o (giả thiết) ˆHBC=ˆKDCHBC^=KDC^ (=ˆBAD=BAD^ đồng vị) ⇒ΔHBC∼ΔKDC⇒ΔHBC∼ΔKDC (g.g) ⇒CHCK=CBCD⇒CHCK=CBCD (hai cạnh tương ứng tỉ lệ) ⇒CH.CD=CK.CB⇒CH.CD=CK.CB (đpcm) c) Xét ΔAEBΔAEB và ΔAHCΔAHC có: ˆAA^ chung ˆAEB=ˆAHC=90oAEB^=AHC^=90o ⇒ΔAEB∼ΔAHC⇒ΔAEB∼ΔAHC (g.g) ⇒AEAH=ABAC⇒AEAH=ABAC (hai cạnh tương ứng tỉ lệ) ⇒AE.AC=AB.AH⇒AE.AC=AB.AH (1) Xét ΔAFDΔAFD và ΔAKCΔAKC có: ˆAA^ chung ˆAFD=ˆAKC=90oAFD^=AKC^=90o ⇒ΔAFD=ΔAKC⇒ΔAFD=ΔAKC (g.g) ⇒AFAK=ADAC⇒AFAK=ADAC (hai cạnh tương ứng bằng nhau) ⇒AF.AC=AK.AD⇒AF.AC=AK.AD (2) Ta có OE=OF (suy ra từ ΔOEB=ΔOFDΔOEB=ΔOFD câu a) OA=OC (tính chất hình bình hành) ⇒OA−OE=OC−OF⇒OA−OE=OC−OF hay AE=FCAE=FC (3) Từ (1), (2) và (3) suy ra AB.AH+AK.AD=AE.AC+AF.ACAB.AH+AK.AD=AE.AC+AF.AC =AC(AE+AF)=AC(FC+AF)=AC2=AC(AE+AF)=AC(FC+AF)=AC2 (đpcm)

21 tháng 11 2021

viết code hả bạn??? đọc lòi mắt

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.a, Chứng minh tứ giác AECF là hình bình hành.b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.c, Chứng minh tứ giác CIDB là hình thang cân.Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.

a, Chứng minh tứ giác AECF là hình bình hành.

b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.

c, Chứng minh tứ giác CIDB là hình thang cân.

Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của  CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại MN. Chứng minh rằng:

a) Tứ giác AKCI là hình bình hành.

b) DM = MN = NB.

c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.  

Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.

a, Tứ giác AEDF là hình gì? Vì sao?

b, Chứng minh: A đối xứng với C qua F.

c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.

0
17 tháng 9 2020

a) ABCD là hình bình hành => AD=BC, AD//BC

--->Dễ dàng có được \(\Delta AED=\Delta CFB\left(c.g.c\right)\Rightarrow AE=CF\)

Mà AE//CF (cùng vuông góc BD) => AECF là hình bình hành.

b) AHDK không thể là hình bình hành nha --> phải là AHCK

Chứng minh: AH//CK (cùng vuông góc BD)

CH//AK (vì ABCD là hình bình hành)

=> AHCK là hình bình hành