Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $ABCD$ là hình bình hành nên $AB=CD$
$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$
Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$
Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.
b.
B, E,F thẳng hàng??? Bạn xem lại đề.
A B C D O M K P L Q E F S T U V I
a) Gọi I là giao điểm của PE và QF. Ta thấy P thuộc trung trực của BE nên \(\Delta\)BPE cân tại P
Kết hợp với ^PBE = 450 => \(\Delta\)PBE vuông cân tại P. Tương tự \(\Delta\)CQF vuông cân tại Q.
Do đó ^POQ= ^OPE = ^OQF = 900 cho nên tứ giác POQI là hình chữ nhật.
=> ^EIF = 900. Mà ^IEF = ^PEB = 450 nên \(\Delta\)EIF vuông cân tại I
Ta có ^EMF = ^AMD = 450 = 1/2.^EIF => \(\Delta\)MEF nội tiếp đường trong tâm I bán kính IE=IF
Cũng dễ có PE // AO (Cùng vuông góc OB). Do vậy ^IME = ^IEM = ^PEA = ^OAE = ^OMA
=> Hai tia MI,MO trùng nhau => O,I,M thẳng hàng. Từ tứ giác POQI là hình chữ nhật ta suy ra OI chia đôi PQ
=> OM cũng chia đôi PQ (đpcm).
b) Dễ thấy khoảng cách tứ K,O,L đến BC bằng AB/2 nên K,O,L thẳng hàng.
Khi đó dễ thấy tứ giác PQTS là hình thang cân nhận KL làm trục đối xứng
Lúc này ta có ^POI = ^OPQ = ^OST => OI vuông góc với ST hay OM vuông góc với ST
=> ^VUM = 900 - ^UMO = 900 - ^OAM = 900 - ^MDC = ^ADV => Tứ giác DAUV nội tiếp
=> ^KUV = ^ADV = 1800 - ^VLK. Từ đây có tứ giác KLVU nội tiếp
Hoặc 4 điểm K,L,U,V cùng thuộc một đường tròn (đpcm).
A B C D F E G O H
a) Từ tứ giác AEBG là hình bình hành suy ra \(\frac{DE}{BG}=\frac{DE}{AE}=\frac{DC}{AB}=\frac{FD}{FB}\) (1)
Đồng thời ^FDE = 1800 - ^ADE = 1800 - ^ACB = ^FBG (2)
Từ (1) và (2) suy ra \(\Delta\)FED ~ \(\Delta\)FGB (c.g.c). Do vậy FD.FG = FB.FE (đpcm).
b) Tương tự câu a ta có \(\Delta\)FEC ~ \(\Delta\)FGA (c.g.c), suy ra ^FGA = ^FEC = 1800 - ^FEA
Vì ^FEA = ^FHA (Tính đối xứng) nên ^FGA = 1800 - ^FHA hay ^FGA + ^FHA = 1800
Vậy 4 điểm F,H,A,G cùng thuộc một đường tròn (đpcm).
A B C D K F E O M N H I
+ Kẻ AH // FE // CI \(\left(H,I\in BD\right)\)
+ \(\Delta AOH=\Delta COI\left(g.c.g\right)\)
\(\Rightarrow OH=OI\)
\(\Rightarrow BH+BI=BH+BO+OI\)
\(=BH+OH+BO=2BO=4BM\)
+ Xét \(\Delta ABH\)có : AH // FM theo định lí Ta - lét ta có :
\(\frac{BA}{BF}=\frac{BH}{BM}\left(1\right)\)
+ Xét \(\Delta BCI\) có CI // ME theo định lí Ta - lét ta có :
\(\frac{BC}{BE}=\frac{BI}{BM}\left(2\right)\)
+ Từ (1) và (2) \(\Rightarrow\)
\(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BH}{BM}+\frac{BI}{BM}=\frac{BH+BI}{BM}=\frac{4BM}{BM}=4\)
Chúc bạn học tốt !!!