K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

A B C D K F E O M N H I

+ Kẻ AH // FE // CI   \(\left(H,I\in BD\right)\)

\(\Delta AOH=\Delta COI\left(g.c.g\right)\)

\(\Rightarrow OH=OI\)

\(\Rightarrow BH+BI=BH+BO+OI\)

\(=BH+OH+BO=2BO=4BM\)

+ Xét \(\Delta ABH\)có : AH // FM theo định lí Ta - lét ta có : 

\(\frac{BA}{BF}=\frac{BH}{BM}\left(1\right)\)

+ Xét \(\Delta BCI\) có CI // ME theo định lí Ta - lét ta có : 

\(\frac{BC}{BE}=\frac{BI}{BM}\left(2\right)\)

+ Từ (1) và (2) \(\Rightarrow\)

\(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BH}{BM}+\frac{BI}{BM}=\frac{BH+BI}{BM}=\frac{4BM}{BM}=4\)

Chúc bạn học tốt !!!

AH
Akai Haruma
Giáo viên
13 tháng 10 2023

Lời giải:

a. Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$

Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$

Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.

b. 

B, E,F thẳng hàng??? Bạn xem lại đề.

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0
20 tháng 5 2019

A B C D O M K P L Q E F S T U V I

a) Gọi I là giao điểm của PE và QF. Ta thấy P thuộc trung trực của BE nên \(\Delta\)BPE cân tại P

Kết hợp với ^PBE = 450 => \(\Delta\)PBE vuông cân tại P. Tương tự \(\Delta\)CQF vuông cân tại Q.

Do đó ^POQ= ^OPE = ^OQF = 900 cho nên tứ giác POQI là hình chữ nhật.

=> ^EIF = 900. Mà ^IEF = ^PEB = 450 nên \(\Delta\)EIF vuông cân tại I

Ta có ^EMF = ^AMD = 450 = 1/2.^EIF => \(\Delta\)MEF nội tiếp đường trong tâm I bán kính IE=IF

Cũng dễ có PE // AO (Cùng vuông góc OB). Do vậy ^IME = ^IEM = ^PEA = ^OAE = ^OMA

=> Hai tia MI,MO trùng nhau => O,I,M thẳng hàng. Từ tứ giác POQI là hình chữ nhật ta suy ra OI chia đôi PQ

=> OM cũng chia đôi PQ (đpcm).

b)  Dễ thấy khoảng cách tứ K,O,L đến BC bằng AB/2 nên K,O,L thẳng hàng.

Khi đó dễ thấy tứ giác PQTS là hình thang cân nhận KL làm trục đối xứng

Lúc này ta có ^POI = ^OPQ = ^OST => OI vuông góc với ST hay OM vuông góc với ST

=> ^VUM = 900 - ^UMO = 900 - ^OAM = 900 - ^MDC = ^ADV => Tứ giác DAUV nội tiếp

=> ^KUV = ^ADV = 1800 - ^VLK. Từ đây có tứ giác KLVU nội tiếp

Hoặc 4 điểm K,L,U,V cùng thuộc một đường tròn (đpcm).

6 tháng 1 2019

A B C D E O F G

Ai có khả khả năng thì xin giải dùm ! 

3 tháng 9 2019

A B C D F E G O H

a) Từ tứ giác AEBG là hình bình hành suy ra \(\frac{DE}{BG}=\frac{DE}{AE}=\frac{DC}{AB}=\frac{FD}{FB}\) (1)

Đồng thời ^FDE = 1800 - ^ADE = 1800 - ^ACB = ^FBG (2)

Từ (1) và (2) suy ra \(\Delta\)FED ~ \(\Delta\)FGB (c.g.c). Do vậy FD.FG = FB.FE (đpcm).

b) Tương tự câu a ta có \(\Delta\)FEC ~ \(\Delta\)FGA (c.g.c), suy ra ^FGA = ^FEC = 1800 - ^FEA 

Vì ^FEA = ^FHA (Tính đối xứng) nên ^FGA = 1800 - ^FHA hay ^FGA + ^FHA = 1800

Vậy 4 điểm F,H,A,G cùng thuộc một đường tròn (đpcm).