Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DEBF có
BE//DF
BE=DF
Do đó: DEBF là hình bình hành
b: ta có: DEBF là hình bình hành
nên Hai đường chéo DB và EF cắt nhau tại trung điểm của mỗi đường(1)
Ta có:ABCD là hình bình hành
nên hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra BD,EF,AC đồng quy
Bạn tham khảo ở đây nhé!
http://diendan.hocmai.vn/showthread.php?t=234169
A B C D E F I J K
a)
ta có: ABCD là hình vuông
=> AB=BC=CD=DA=>1/2AB=1/2CD=AI=JC
AI//JC
=>tứ giác AICJ là hình bình hành
gọi trung điểm của AC là K
ta có:ABCD là hình vuông=> AC và BD cắt nhau tại trung điểm của mỗi đường
=>BD cắt AC tại K(1)
ta có AICJ là hình bình hành => AC và DJ cắt nhau tại trung điểm của mỗi đường
=>DJ cắt AC tại K(2)
từ (1)(2)=> 3 đoạn thẳng AC,BD,Ị cắt nhau tại trung điểm K của chúng
b)
ta có:
góc ADB=góc DBC
AJ//IC=> góc AED=góc CFB
ta có:
\(\widehat{EAD}=180^o-\widehat{ADB}-\widehat{AED}\)
\(\widehat{FCB}=180^o-\widehat{DBC}-\widehat{CFB}\)
=>góc EAD=góc FCB
xét tam giác DEA và tam giác BFC có
AD=BC(gt)
góc ADB=góc DBC
góc EAD=góc FCB(cmt)
=>tam giác DEA=tam giác BFC(g.c.g)
=>AE=CF
c)
ta có:tứ giác AICJ là hình bình hành
=>AJ=IC
AE=CF
EJ=AJ-AE
IF=IC-FC
=>EJ=IF
EJ//IF
=>tứ giác IFJE là hình bình hành
d)
xét tam giác ACD có
DK là trung tuyến ứng với cạnh AC
AJ là trung tuyến ứng với cạnh CD
=>giao của DK và AJ là trọng tâm tam giác ACD
=>E là trọng tâm tam giác ACD
cm tương tự ta có: F là trọng tâm tam giác ABC
ta có:
E là trọng tâm tam giác ADC
=>EK=1/2DE
F là trọng tâm tam giác ABC
=>FK=1/2BF
DE=BF(tam giác DEA=tam giác BFC)
=>EK=FK
ta có:
=>FB= DE=2EK=EK+KF=EF
=>DE=EF=FB(đfcm)
a) ABCD là hình bình hành nên ta có AB=CD ta có EB=1/2AB và DF=1/2CD suy ra EB=DF ta lại có AB//CD hay EB//DF tứ giác DEBF có EB//DF và EB=DF nên tứ giác DEBF là hình bình hành ( vì có một cặp cạnh đối song song và bằng nhau )
b) gọi O là giao điểm hai đường chéo của hình bình hành ABCD, ta có O là trung điểm của BD DEBF là hình bình hành nên trung điểm O của BD cũng là trung điểm của EF vậy AC.BD.EE đồng quy tại O c) tam giác ABD có các đường trung tuyến AO,DE cắt nhau tại M nên OM=1/3OA và ON=1/3OC. ta có OA=OC nên OM=ON Tứ giác EMFN có các đường chéo cắt nhau tại trung điểm của mỗi đường OM=ON , OE=OF nên là hình bình hành