Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha
a) Vì M là trung điểm AB, N là trung điểm CD
=> MN là đường trung bình
=> MN // AD // BC
và MN = ( AD + BC ) : 2 = AD = BC ( vì ABCD là hình thoi nên AD = BC )
Xét tứ giác AMND có MN // AD và MN = AD
=> AMND là hình bình hành ( đpcm )
b) Vì MN // BC và MN = BC
=> BMNC là hình bình hành
=> hai đường chéo BN và CM cắt nhau tại L là trung điểm mỗi đường ( đpcm )
c) Xét tam giác DAM và tam giác BCN có
AD = BC
góc DAM = góc BCN ( trong hình thoi và hình bình hành, hai góc đối bằng nhau )
AM = CN = ( AB/2 = DC/2 do AB = DC )
=> tam giác DMA = tam giác BNC ( c-g-c )
=> góc AMD = góc BNC ( c g t ư )
Có AB // DC
=> góc AMD = góc MDN ( cặp góc so le trong )
mà góc AMD = góc BNC
=> góc BNC = góc MDN
mà hai góc này đồng vị
=> MD // BN
mà MB // DN ( AB // CD )
=> MBND là hình bình hành
=> BD cắt MN tại trung điểm O của MN
Chứng minh tương tự với hình AMCN
=> AC cắt MN tại trung điểm O của MN
Vì M là trung điểm AB, L là trung điểm BN
=> ML là đường trung bình trong tam giác BAN
=> ML // AN
và ML = 1/2 AN = AK ( AMND là hình bình hành, K là giao hai đường chéo nên K là trung điểm AN )
Xét tứ giác MLNK có ML // KN, ML = KN
=> MLKN là hình bình hành
=> MN giao KL tại trung điểm O của MN
Vì bốn đường thẳng AC, BD, MN , KL cùng đi qua O
=> chúng đồng quy ( đpcm )
A B C D O E F H K I
a) Xét 2 tam giác OAF = OCE (c.g.c)
=> \(\widehat{FAO}=\widehat{OCE}\) =>AF//EC và AF=EC
=> Tứ giác AECF là hình bình hành
b) Xét 2 tam giác ACK=CAH (g.c.g)
=> AH=CK
c) OI//CK//AH
=> OI//AH, O là trung điểm AC=> HI=IC (1)
FH//OI, F là trung điểm OD
=> H là trung điểm DI
=> DI=2HI (2)
Từ (1) và (2) => DI=2CI
SOBN=SOD
k nha
Chứng minh SOBN = SOD