K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

A B C D H K I M N J P 1 2

a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC

=> ^CBH = ^CDK. 

Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g)

=> \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm).

b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\)

Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1)

BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc)

=> ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2)

Từ (1) và (2) => ^ABC = ^KCH

Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm).

c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC.

Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g)

=> \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3)

Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD)

=> \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\)

Mà CD=AB nên \(AB.AH=CP.AC\)(4)

Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\)

\(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm).

d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD)

Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm).

e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ.

=> \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau)

\(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales)

Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).

16 tháng 3 2016

 a, BE, DF cùng vuông góc vs AC nên BE//DF 
tam giác BEO = tam giác DFO ( cạnh huyền - góc nhọn) (O là gđ 2 đường chéo) 
=> BE = FD 
từ đó đc tg BEDF là hình bình hành 

b, tam giác BHC đồng dạng vs tam giác DKC (g.g) 
có góc H = góc k =90 độ 
và góc CBH = góc CDK ( vì 2 góc này kề bù vs 2 góc bằng nhau là góc CBA =góc ADC) 
=> BC/DC = HC/KC 
=>CB.CK = CH.CD 

c, tam giác ABE đồng dạng vs tam giác ACH (g.g) 
vì có góc E = góc H = 90 độ 
và góc A chung 
=> AB/AC = AE/AH 
=> AB. AH = AC.AE 

T]ơng tự ta đc tam giác ADF đồng dạng vs tam giác ACK 
=> AD/AC = AF/AK 
=> AD. AK = AC.AF 

Vậy AB.AH + AD.AK = AC.AE + AC.AF = AC. (AE +AF) = AC .( AE +CE) = AC^2 
tự chứng minh AF = CE theo tam giác vuông BEC = tam giác vuông DFA ( cạnh huyền - cạnh góc vuông) 
 

21 tháng 3 2019

Ta có:\(a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC => ^CBH = ^CDK. Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g) => \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm). b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\) Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1) BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc) => ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2) Từ (1) và (2) => ^ABC = ^KCH Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm). c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC. Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g) => \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3) Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD) => \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\) Mà CD=AB nên \(AB.AH=CP.AC\)(4) Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\) \(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm). d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD) Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm). e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ. => \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau) \(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales) Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).\)

14 tháng 6 2021

Hay quá ạ (≧▽≦)❤ 

2.tự vẽ hình 

a)Gọi O là giao điểm của hai đường chéo=>OD=OB(t/c)

Xét tgv OFD và tgv OEB có:

\(\widehat{FOD}=\widehat{EOB}\left(\text{đ}\text{ối}\text{đ}\text{ỉnh}\right)\)

\(DO=BO\left(cmt\right)\)

=> tgv OFD = tgv OEB (cgv-gn)

=> DF=BE

Mà DF//BE ( cùng vg với AC)

=> tg DEBF là hbn ( có cặp cạnh đối // và bằng nhau)

b) Ta có : \(\widehat{ADC}=\widehat{ABC}\)(hai góc so le trong)

\(\Rightarrow\widehat{CDK}=\widehat{CBH}\)

Xét tg CKD và tg CHB có :

\(\widehat{CDK}=\widehat{CBH}\)

\(\widehat{DKC}=\widehat{BHC}\left(=90\text{đ}\text{ộ}\right)\)

=> tg CKD = tg CHB (g.g)

\(\Rightarrow\frac{CK}{CD}=\frac{CH}{CB}\Rightarrow CD\cdot CH=CK\cdot CB\)

c) Xét tg ABE và tg AHC có :

\(\widehat{AEB}=\widehat{AHC}\)

\(\widehat{A}:chung\)

=> tg ABE đồng dạng tg AHC (g.g)

\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB\cdot AH=AC\cdot AE\)(1)

Xét tg ADF và tg ACK có :

\(\widehat{A}:chung\)

\(\widehat{\text{AF}D}=\widehat{AKC}\)

=> tg ADF đồng dạng tg ACK

\(\Rightarrow\frac{AD}{AC}=\frac{\text{AF}}{AK}\Rightarrow AD\cdot AK=AC\cdot\text{AF}\)(2)

Xét tgv AFD và tgv CEB có :

AD=BC(gt)

DF=BE(cmt)

=> tg AFD=tg CEB (ch-cgv)

=> AF=CE (3)

Từ (1); (2); (3) ta có :

\(AB\cdot AH+AD\cdot AK=AC\left(AE+\text{AF}\right)=AC\left(AE\cdot CE\right)=AC^2\)