Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I M N
a) ta có: BN//AD(N thuộc BC) nên theo hệ quả định lí talet
\(\dfrac{AM}{MB}=\dfrac{DM}{MN}\Rightarrow\dfrac{AM}{AM+MB}=\dfrac{DM}{DM+MN}\Rightarrow\dfrac{AM}{AB}=\dfrac{DM}{DN}\left(1\right)\)
ta có: MB//DC (M thuộc AB) nên theo hệ quả định lí talet:
\(\dfrac{BC}{NC}=\dfrac{DM}{DN}\) (2)
từ (1) và (2) \(\Rightarrow\dfrac{AM}{AB}=\dfrac{BC}{CN}\left(=\dfrac{DM}{DN}\right)\Rightarrow AM\cdot CN=AB\cdot BC\\ \Rightarrow AM\cdot CN=a\cdot b\)
b) ta có: AD//CN nên theo hệ quả định lí talet:
\(\dfrac{DI}{IN}=\dfrac{AI}{IC}\)(3)
ta có: AM//DC nên theo hệ quả định lí talet:
\(\dfrac{IM}{ID}=\dfrac{AI}{IC}\)(4)
từ (3) và (4) \(\Rightarrow\dfrac{DI}{IN}=\dfrac{IM}{ID}\left(=\dfrac{AI}{IC}\right)\Rightarrow ID^2=IM\cdot IN\)
Có thể giải thêm một câu này không, dùng hình đó vs dữ liệu đó luôn
1/DI = 1/DM + 1/DN
(Học sinh tự vẽ hình)
A)Có:\(\frac{AM}{AB}\)=\(\frac{AM}{CD}\)(VÌ AB=CDdoABCDlà hình bình hành) (1)
Mà \(\frac{AM}{CD}\)=\(\frac{AI}{IC}\)(hệ quả của định lí Ta-lét) (2)
Từ 1 và 2 có \(\frac{AM}{AB}\)=\(\frac{AI}{IC}\) (3)
CMTT ta được: \(\frac{BC}{CN}\)=\(\frac{AI}{IC}\) (4)
Từ 3 và 4 suy ra: \(\frac{AM}{AB}\)=\(\frac{BC}{CN}\)
----AM.CN=AB.BC
Hay AM.CN=a.b
b)CÓ: \(\frac{AD}{CN}\)=\(\frac{AM}{CD}\)(Hai tam giác ADC và CND đồng dạng)
Mà theo hệ quả của Ta-lét thì: \(\frac{AD}{CN}\)=\(\frac{DI}{IN}\)
Và \(\frac{AM}{CD}\)=\(\frac{IM}{DI}\)
Do đó: \(\frac{DI}{IN}\)=\(\frac{IM}{DI}\)
----\(^{DI^2}\)=IN.IM (ĐPCM)
Tham khảo bài này nha!
Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?
Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
hay ta có OK đi qua trung điểm của AB và CD.
: Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
ta có OK đi qua trung điểm của AB và CD.
A B C D H K I M N J P 1 2
a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC
=> ^CBH = ^CDK.
Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g)
=> \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm).
b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\)
Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1)
BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc)
=> ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2)
Từ (1) và (2) => ^ABC = ^KCH
Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm).
c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC.
Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g)
=> \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3)
Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD)
=> \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\)
Mà CD=AB nên \(AB.AH=CP.AC\)(4)
Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\)
\(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm).
d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD)
Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm).
e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ.
=> \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales)
Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).