Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là hình bình hành
=> AD = BC (tc)
góc ADC = góc CBA (tc) (1)
góc DAB = góc BCD (tc) (2)
AM; CN là phân giác của góc DAB; góc BCD (Gt)
=> DAM = 1/2. góc DAB và BCN = 1/2. góc BCD (tc)
=> góc DAM = góc BCN ; (1)(2)
=> tam giác ADM = tam giác CBN (g-c-g)
=> AM = NC (đn)
có AN // MC do ABCD là hình bình hành (gt)
=> ANCM là hình bình hành (dh)
Bạn tự vẽ hình nha
a) Do ABCD là hình bình hành ⇒ Góc A = góc C
⇒ \(\dfrac{1}{2}\)góc A = \(\dfrac{1}{2}\)góc C ⇒ Góc DAM = Góc BCN
Xét tam giác ADM và tam giác CBN có:
AD = BC ( ABCD là hình bình hành)
Góc DAM = góc CBN ( Chứng minh trên )
Góc ADB = góc ABC ( ABCD là hình bình hành )
⇒ Tam giác ADM = tam giác CBN (g.c.g)
⇒ BN = DM ( 2 cạnh tương ứng )
Vì ABCD là hình bình hành ⇒ AB = CD
⇒ BN + AN = CM + DM.
Mà BN = DM ⇒ AN = MC. Do AN song song với MC ( vì AB song song với CD)
ANCM là hình bình hành.
b) Xét tứ giác BMDN có BN = DM ; BN song song với DM ( do AB song song với CD)
⇒ BMDN là hình bình hành ⇒ BM = DN
Vì ABCD là hình bình hành
⇒ AB//CD
Ta có :
AM là p/g của A
NC là p/g của C
⇒ DAM=BCN
⇒ AM//NC ( slt )
Xét hình thang AMCN có
AD//BC ( gt)
AM//CD (cmt)
⇒ AMCN là hình bình hành
Ta có: ∠ A = ∠ C (tính chất hình bình hành)
∠ A 2 = 1/2 ∠ A ( Vì AM là tia phân giác của ∠ (BAD) )
∠ C 2 = 1/2 ∠ C ( Vì CN là tia phân giác của ∠ (BCD) )
Suy ra: ∠ A 2 = ∠ C 2
Do ABCD là hình bình hành nên AB // CD (gt)
Hay AN // CM (1)
Mà ∠ N 1 = ∠ C 2 (so le trong)
Suy ra: ∠ A 2 = ∠ N 1
⇒ AM // CN (vì có cặp góc ở vị trí đồng vị bằng nhau) (2)
Từ (1) và (2) suy ra tứ giác AMCN là hình bình hành.