Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hạ K vuông góc DC tại N =>EM//KN﴾1﴿ Vì F dx K qua BC =>FC=CK =>2 góc FCB=FCK Mà A=C=60 độ =>góc KCN=60 Xét 2 tam giác vuông EMD và KNC có: ED=CK﴾cùng Bằng FC﴿ D= góc KCL => tam giác EMD=KNC ﴾cạnh huyền góc nhọn ﴿ =>EM=KN﴾2﴿ Từ ﴾1﴿ và ﴾2﴿ =>EKNM là HBH =>EK//DC =>EK//AB
hạ K vuông góc DC tại N => EM//KN(1)
vì F dx K qua BC = > FC = CK
=> 2 góc FCB = FCK
mà A=C + 60 độ => góc KCN = 60
xét 2 tam giác vuông EMD và KNC có :ED = CK ( cùng bằng FC ) D = góc KCL
=> tam giác EMD = KNC ( cạnh huyền góc nhọn )
=> EM = KN (2) từ (1) và (2)
=> EKNM là HBH => EK//DC=>EK//AB
a) Áp dụng định lí Pytago vào ΔABC vuông tại A,ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Xét hbh ABCD có:
F là trung điểm của AD (gt)
E là trung điểm của BC (gt)
=> EF là đường trung bình của hbh ABCD
=> AB//EF//DC (t/c đướng trung bình của hbh)
Ta có: hbh ABCD
=> Góc A = Góc C và góc B = góc D( t/c hbh)
Ta có: EF//DC(cmt) => góc AFE = góc ADC ( cặp góc đồng vị)
Mà Góc B = Góc ADC (cmt)
=> Góc B = góc AFE (1)
Ta có: EF//DC(cmt) => Góc BEF = góc BCD (cặp góc đồng vị)
Mà góc A = góc BCD
=> góc A =góc BEF (2)
Từ (1) và (2)
=> Tứ giác ABEF là hình bình hành (5) ( các cặp góc đối bằng nhau)
Ta có: AD = 2AB hay AB = \(\frac{1}{2}\)AD (3)
mà AF = \(\frac{1}{2}\)AD(4)
Từ (3) và (4) => AB = AF (6)
Từ(5) và (6) => tứ giác ABEF là hình thoi ( hbh + 2 cạnh kề bằng nhau)
=> AE vuông góc với BF
Ở CÂU a) bạn có thể cm AB//EF và AF// BE đề suy ra hbh nha
b) Gói O là giao điểm của AE và BF
Ta có: tứ giác ABEF là hình thoi => BF là tia phân giác của góc B ( t/c hình thoi)
Ta có: góc A = góc BEF (cmt)
Mà góc A = 60 độ (gt)
=> góc A = góc BEF = 60 độ
Xét tứ giác ABEF có:
góc BAF + góc ABE + góc BEF + góc AFE = 360 độ
=> 60 độ + góc ABE + 60 độ + góc AFE = 360 độ
=> góc ABE + góc AFE = 360 độ - 60 độ - 60 độ = 240 độ
Mà góc ABE = góc AFE
=> góc ABE = góc AFE = \(\frac{240}{2}\)=120 độ
Ta có: BF là tia p/g của góc B => góc ABF = góc EBF = \(\frac{120}{2}\) 60 độ
Vậy góc EBF = góc BEF = 60 độ ( góc A = góc BEF đã cm ở câu a)
Mà góc BEF = góc BCD ( đã cm ở câu a)
=> góc EBF = góc BCD (7)
Ta có: AD//BC( tứ giác ABCD là hbh)=> FD//BC=> tứ giác FDCB là hình thang (8)
Từ (7) và (8) => tứ giác FDCB là hinh thang cân
Câu c và d dễ lắm, bạn cố suy nghĩ nha, nhưng mình nói thật bài này rất rất rất dễ luôn đó
c)
c) Ta có: góc A = góc ABF = 60 độ ( cm ở câu b )
=> AF = FB ( quan hệ giữa góc và cạnh đối diện)
Mà AF = FD ( f là trung điểm của AD)
=> FB = FD
=> tam giác DFB cân tại F
=> góc FBD = góc FDB (9)
Ta có: AD//BC ( cmt)
=> Góc FDB = góc CBD ( cặp góc slt)(10)
Từ (9) và (10) => góc FBD=góc CBD
Mà góc FBD+ góc CBD = 60 độ
=> góc FBD = góc CBD = \(\frac{60}{2}\)= 30 độ
Mà góc FDB = góc FBD
=> góc FDB = 30 độ
d) Ta có: B là trung điểm của AM => A,B,M thẳng hàng
Ta có: B là trung điểm của AM ( M đối xứng với A qua B) => AB = BM
Mà AB = DC ( tứ giác ABCD là hbh)
DC = BM(11)
Ta có: AB//DC( tứ giác ACD là hbh)
Mà A,B,M thẳng hàng
=> BM//DC (12)
Tứ (11) và (12)
=> tứ giác BMCD là hình bình hành (13)
Ta có: góc ABE = góc AFE = 120 độ (cm ở câu b)
Mà góc ADC bằng 2 góc này
=> góc ADC = 120 độ
Xét góc ADC có:
góc ADB + góc BDC = 120 độ
=> 30 độ + góc BDC = 120 độ
=> góc BDC = 120 độ - 30 độ = 90 độ (14)
Từ (13) và (14)
=> tứ giác BMCD là hình chữ nhật ( hbh+ 1 góc vuông)
=> E là trung điểm của BC và BC ( t/c hình chữ nhật)
Có E là trung điểm của MD => 3 điểm D,E,M thẳng hàng